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EYE BALL DETECTION IN A REAL TIME IMAGE USING MATLAB
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Abstract

This paper addresses the problem of detection and tracking an eye ball using image processing algorithms. After analyzing all
the collected data by means of geometric, mathematic and physical procedures; the ball will be detected. The detection and
tracking of ball in a video will be our objective. This characteristic has potential applications for automatic editing, broadcasting,
archiving, browsing and training. The suggested algorithm is based on finding the biggest object present in each frame. The
results are promising when the moving objects are few and of different sizes. In other words, when there are a number of
objects of the same size, present in the video, this algorithm fails to produce accurate results .To cope with the limitations ,the

video chosen has very few moving objects.
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|. DETECTION AND TRACKING
1. Detection Methods
1.1. Convolution and Correlation
Convolution

Linear filtering of an image is accomplished through
an operation called convolution. In convolution, the value
of an output pixel is computed as a weighted sum of
neighboring pixels. The matrix of weights is called the
convolution kernel, also known as the filter.

Forexample, suppose theimage is:

A=117 24 1 8 15
235 7 1416
4 6 13 20 22
101219 21 3
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The convolution kernel is:

h=18 16
357
49 2

The following matrix box shows how to compute the
(2,4) output pixel using these steps:

1. Rotate the convolution kernel 180 degrees about its
centerelement.

2. Slide the center element of the convolution kernel so
thatitlies on top of the (2, 4) element of A.

3. Multiply each weight in the rotated convolution
kernel by the pixel of Aunderneath.

4. Sumtheindividual products from step 3.
Hence the (2, 4) output pixelis:
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Correlation

The operation called correlation is closely related to
convolution. In correlation, the value of an output pixel is
also computed as a weighted sum of neighboring pixels.
The difference is that the matrix of weights, in this case
called the correlation kernel, is not rotated during the
computation.

The following figure shows how to compute the (2, 4)
output pixel of the correlation of A, assuming h is a
correlation kernel instead of a convolution kernel, using
these steps:

1. Slide the center element of the correlation kernel so
thatlies on top of the (2, 4) element of A.

2. Multiply each weight in the correlation kernel by the
pixel of Aunderneath.

3. Sumtheindividual products from step 3.

The (2,4) output pixel from the correlation is:
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1.2. Shape Recognition

The aim of shape recognition is to make the
computer recognize particular shapes or patterns in a big
source bitmap. Like the audio signal with speech
recognition, this is far from being a trivial issue. Lots of Fig 1.1. Source Image.
powerful but also very complex methods exist to recognize
shapes in an image. The one we are going to study here is
very basic and makes a number of assumptions to work
correctly. The shape we are going to try to situate on a
source image must not be rotated nor distorted on this
actual image. This limits a lot the use of this algorithm
because in real situations the pattern you search in an
image is always a bit rotated or distorted. In one
dimensional signal correlation between two signals
quantifies how similar they are; in two dimensions the
principle is the same. Computing the correlation of the
source image and the pattern we are looking for while give
us an output image with a peak of white corresponding to
the position of the pattern in the image. In fact we make our
source image pass through a filter which kernel is the
pattern we are looking for. When computing the output
image pixel by pixel at one point the kernel and the position
of the searched pattern in the image will correspond
perfectly, this will give us a peak of white we will be able to
situate.

Fig 1.2. The Pattern The Algorithm Will Be Looking For.

Therefore the implementation of the algorithmis very
simple; we compute the matrix convolution of the source
image with the kernel, constituted of the pattern we want to
search. In this case you will almost be forced to use the
FFT convolution, indeed the searched patterns are often
more then 30 pixels large, and for kernels of over 30x30 it's
fasterto use an FFT rather than straight convolution. | tried
this algorithm without the FFT optimization and it is very
slow: about one transform per minute!

Fig 1.3. The White Peak Corresponding to the Ball's Position.

However the results themselves are quite
remarkable, the position of the pattern is well recognized,
sometimes with a bit of noise though. A nice way to
enhance the results and make the peaks even more
precise is to make the kernel pass through an edge
enhancement filter; this will make the kernel more
selective and precise. Here are the results of the algorithm:
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2. Miscellaneous Mathematical Techniques

2.1 Gaussian Filter

Fig 1.4. Source Image. Fig 1.7. A Typical Gaussian Distribution

A Gaussian distribution, N (u,0%)in a variant X with
mean W and variance o” has probability function defined
by,

W
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The continuous distribution graph is symmetric and

has a similar shape to a bell-shaped curve with a MGF

Fig 1.5. The Pattern the Algorithm Will be Looking For. (Moment Generating Function)

l 2 ".
M (#) r'-_\'p(pﬁ f :r'r'H')

Normal distributions have many convenient
properties. Random variants with unknown distributions
are often assumed to be normal, especially in physics and
astronomy. This distribution has been found to regularly
occur in real-world. Sets of data, and it is often the limit to
which the sum of a large number of random Variables.
Many common attributes such as test scores and height
follow roughly normal distributions, with few members at
the high and low ends and many in the middle. Although
this can be a dangerous assumption, it is often a good
approximation due to a surprising result known as the
central limit theorem, which states that the mean of any set
of variants with any distribution having a finite mean and
variance tends to the normal distribution.

Fig 1.6. The White Peak Corresponds to
The Positions of The Patterns. 2.2. Method of Least Squares

The method of least squares is a statistical approach
that is based on maximum likelihood principle for
estimating the parameters of a model from a set of data.
The method is computationally simple and often leads to
closed form (i.e.: noiterative) solutions.
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Fig 1.8. Examples the Least Square Fitting of Straight And
Polynomial Lines to Noise Effected Data.

Estimations of the optimal parameters are achieved
by minimizing a least squares sum of residuals between
the observed data and the model prediction in the following
way. If a set of n parameters are defined in a vector x, as
X = (X, Xy, -0y X;), then given a system it is stated that a
relationship between this parameters vector and
measurements z of the system is defined by,

A-z=0

However, given noisy measurements, it is unlikely
that a solution to (2.10) will exist. Therefore, for any
estimate of the parameters there will be some degree of
error.

A-z=E

As previously stated, the idea of least squares
attempts to minimized the squared error over n
measurements, and so system representation to be
minimized becomes,

f(x) = (Ax-2)" (Ax - 2)

and minimizations is achieved by differentiating
(2.12) with respect to x and finding the stationary position,
which produces the following least square definition,

x=(AA)'A"z
This functional form is justified by probability theory

on the basis that each piece of observed data has
independent errors drawn from a Gaussian distribution.

However, it is claimed that the method is generally
not suitable for data which may be contaminated by other
sources of error, such as outliers. Solutions to these types
of problems are normally referred to as robust, and include
the Hough transform, and can never be solved in closed
form.

2.3. B-Spline

B-Spline curves originate from flexible strips used to
create smooth curves in traditional drafting applications.
Much like Bezier curves they are formed mathematically
from piecewise approximations of cubic polynomial
functions with zero, first and second order continuity. B-
Splines are one type of spline that is frequently used in
graphics applications. From N + 1 control points, it is

possible to derive a continuous function P(v) such that,

n
P(v) ZH_.,\';..,{.-'I. v=0—n—-t+2
k=0

Where,

Pk =Control points.

N (v) = Blending functions.

t =Degree (normally 3 or 4).

uk= Knots (the break points where they occur on the
curve).

The blending functions are defined as,

), otheruise

) v=ulk) ) ulk+t)=1 .
Nypofv) ﬁ\lr 1)+ _“\II—I-\JL-;: 1(t)

Such curves have many advantages including:-

1. Changes to a control point only affect the curve in
thatlocality.

2. Any number of points may be added without
increasing the degree of the Polynomial.

3. As with Bezier curves, adding multiple points at or
near a single position draws the curve towards that
position.

4.  Closed curves may be created by making the first
and last points the same, although continuity will not
be maintained automatically.

2.4. Runge-Kutta Numerical Integration

The methods most commonly employed to
numerically integrate ordinary differential equations were
first developed by the German mathematicians C.D.T.,
Runge and M.W. Kutta in the latter half of the nineteenth
century. The basic reasoning behind so-called Runge-
Kutta methods is the employment of a trial step at the
midpoint of an interval to cancel out lower-order error
terms. The Runge-Kutta approach is to aim for the
desirable features of the Taylor series method, but with the
replacement of the requirement for the evaluation of higher
order derivatives with the requirement to evaluate f(x, y) at
some points within the step x to x,,. The method assumes
that the correct value of the slope over the step can be
written as a linear combination of the function f(x, y)
evaluated at certain points in the step.
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The general expression for a Runge Kutta methodiis,
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Since it is not initially known at this point in the
interval these evaluations should be considered, it is
possible to choose these points in such a way that the
result is consistent with the Taylor series solution to some
particular, known as the order of a based Runge-Kutta
method.

The second order Runge-Kutta algorithm requires
the known derivative function f at the endpoints and
midpoint of the interval, and the unknown function y at the
previous point. Since we start with initial conditions, the
algorithm is self starting. Note to that it is applicable with a
general function f (for example nonlinear), and simple to
program. The second-order formis defined as,
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In a trade-off of accuracy against computational
effort, the fourth order algorithm is perhaps the most
efficient of any method and is given by,
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3.Tracking Methods
3.1. Kalman Filter

The Kalman filter is an efficient recursive filter which
estimates the state of a dynamic system from a series of
incomplete and noisy measurements, developed by
Rudolf Kalman.

Rudolph E. Kalman devised the Kalman filter in 1960
and it has its roots in applied statistical theory. It is a
commonly used technique for the removal of
measurement errors and estimating system parameters in
a wide variety of fields especially economics, physics and
of course computer science.

In general, the method proposed by Kalman
assumes that at a given point in time 't' the current state x,
of a physical system can be estimated, and that this
system state is linearly related to the state attime t + 1 by
some matrix Ain the following manner,

N | -'l!-‘“f | 'y (1)

Where the vector w represents the process noise
and is specified by a co-variance matrix Q. The confidence
in the estimate of each variable in x,is expressed in terms
of a Gaussian distribution, with the variance of each
Gaussian held in a co-variance matrix P.

Kalman also stated that must also be a linear
relationship between any measurements taken, and the
state of the physical system,

o Hyxy + vy 2

Where z, represents a vector containing
measurements of the physical system to be estimated and
vector v, symbolizes the measurement noise and is
defined by a co-variance structure R.

Once (1) & (2) and are established, a recursive
approach estimates x,in an optimal fashion, where optimal
is defined as the minimization of the mean squared error of
(2) over all the measurements. The algorithm employed
consists of two main steps, predictand update.

Predict

At each time step, a prediction is made about the
new state vector and state co-variance matrix using the
following relationships,
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The prediction of the new state is calculated simply
from the linear relationship between the state attand t + 1
(the noise is ignored as it is assumed to have zero mean).
The variance of the state variables is also increased by the
process noise, defined by co-variance matrix Q.

Update

Following this prediction, a measurement of the
physical system z is taken. The state vector is then
updated using this measurement by means of the
following equations,

Pii1

£y Iy t I\.’ f.’ —. J‘!r.l"! } (5)
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The update of the state vector at time t provides an
evaluation of the level of inaccuracy of the estimation
based upon to the measurement taken. This is multiplied
by a matrix K, which is a measure of strength of trust in the
measurement, and what influence it has on the estimation
of the state. Finally, the scaled difference between the
predicted measurement and the measurement is added to
the predicted state vector x.. The final stage of the predict-
update cycle is to update the variance of the state
Gaussians.

3.2. Condensation Algorithm

The condensation algorithm (Conditional Density
Propagation) is a computer vision algorithm. The principal
application is to detect and track the contour of objects
moving in a cluttered environment. Object tracking is one
of the more basic and a difficult aspect of computer vision
and is generally a prerequisite to object recognition. Being
able to identify which pixels in an image make up the
contour of an object is a non-trivial problem. Condensation
is a probabilistic algorithm that attempts to solve this
problem.

The algorithm itself is described in detail by Isard and
Blake in a publication in the International Journal of

Computer Vision in 1998. One of the most interesting
facets of the algorithm is that it does not compute on every
pixel of the image. Rather, pixels to process are chosen at
random, and only a subset of the pixels ends up being
processed. Multiple hypotheses about what is moving
where are supported naturally by the probabilistic nature of
the approach. The evaluation functions come largely from
previous work in the area and include many standard
statistical approaches. The original part of this work is the
application of particle filter estimation techniques.

4. Algorithms
4.1. Ball Detection Algorithm

@ Loading images
% loop over all images
fori=1:60
% load image
Im = (imread(['C:/DATA/,int2str(i), "jpg));
imshow(Im)
end

@ Background subtraction
% computes the background image
Imzero = zeros(240,320,3);
fori=1:5
Im{i}= double(imread(['C:/DATA/int2str(i),".jpg));
Imzero = Im{i}+Imzero;
end

@ Extraction of ball from an image
% background subtraction and selection of pixels
with highest difference
fore = zeros(MR,MC);
fore = (abs(Imwork(:,:,1)-Imback(:,:,1)) > 10) ...
| (abs(Imwork(:,:,2) - Imback(:,:,2)) > 10) ...
| (abs(Imwork(:,:,3) - Imback(:,:,3)) > 10);

% removal of small noise
foremm = bwmorph(fore,'erode',2);

@ Selection of largest object
labeled = bwlabel(foremm,4);
stats = regionprops(labeled,['basic']);%basic
mohem nist
[N,W] = size(stats);
if N <1
return

end
@ Computing center of mass

centroid = stats(1).Centroid;
radius = sqrt(stats(1).Area/pi);
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cc = centroid(1);
cr = centroid(2);
flag = 1;

return

4.2. Ball Tracking Algorithm

Initializing kalman filter

% Kalman filter initialization

R=[[0.2845,0.0045]',[0.0045,0.0455];

H={[1,01,[0,11,0,01,[0,01;

Q=0.01*eye(4);

P =100*eye(4);

dt=1;

A=[[1,0,0,01,[0,1,0,07",[dt,0,1,0]",[0,dt,0,1];

g = 6; % pixels"2/time step
=[0,0,0.9];

kfinit=0;

x=zeros(100,4);

Updating position of object by kalman filter
% Kalman update

if kfinit==
=[MC/2,MR/2,0,0]

else

xp=A*x(i-1,:)' + Bu

end

kfinit=1;

PP =A*P*A'+Q

K = PP*H™inv(H*PP*H'+R)
X(, % (xp + K*([ec(i),cr(i)]' - Hxp))';

(I,
[cc( ).cr(i)]
= (eye(4)-K'H)"PP

Il. RESULTS

Ball Detected

Ball Tracked

lll. CONCLUSION

In this paper we have shown that two important
Steps of video surveillance, namely object detection and
tracking in sports, can be integrated using a kalman filter
based algorithm. This approach has the advantage that no
thresholds are necessary to re-find previously detected
objects. This also leads to better and easier detection of
(partial) occlusion.

The core of the object is tracked comparing the size
of all the moving objects and finally selecting the biggest
object. Then the center of mass of the biggest object is
computed.

This work could have been tackled in many different
ways. The literature review discusses the past work on
similar topics, and hence the techniques that could have
been used in this coursework.

Results show that this algorithm is quiet effective
when the difference between sizes of moving objects is
high. But this algorithm fails when the difference between
sizesisvery less

This gives scope for future works to build on this
software. The software has been designed and
implemented for the specific task of detecting cricket balls
from a series ofimages. Other algorithms could be used to
improve the functionality of the program.

Also the software could be made more general so it
can be used for other research that the Sports Engineering
Research Group. The software has certain criteria that
need to be fulfilled in order for a region of the picture to be
detected. It would be possible to give the user a selection
of criteria that could be used for detection of other objects
in an image. It may also be possible for the software to
detect the cricket ball in a single image without the need of
comparison with anotherimage.



