
I.INTRODUCTION

Congestion in a network or internet creates obvious
problems for the end system: reduced availability and
throughput and lengthened response times. When a
packet is dropped before it reaches its destination, all of
the resources it has consumed in transit are wasted.
Improving the congestion control and queue management
algorithms in the Internet has been one of the most active
areas of research. The Internet has mainly relied on the
cooperative nature of TCP congestion control in order to
limit packet loss and fairly share network resources.
However new applications are being deployed which do
not use TCP congestion control and are not responsive to
the congestion control and are not responsive to the
congestion signals given by the network. Such
applications are potentially dangerous because they drive
up the packet loss rates in the network and can eventually
cause congestion collapse.

The aim of this paper to compare the performance
analysis of active queue management techniques called
Blue, Stochastic Fair Blue, and Core-stateless Fair Queuing
with RED. Blue and Stochastic Fair Blue is used to reduce
packet loss rates, queuing delay, high link utilization with
minimal amount of buffer space. Core-stateless fair queuing
enforces fairness among large number of connection with
small amount of state information.

BLUE uses the packet loss and the link utilization
history to manage congestion. Also, only a single marking
probability is maintained, when the queue is continually
dropping packets due to buffer overflow, this probability is
incremented, and when the queue is idle or empty, it is
decremented.

Abstract

Active Queue Management (AQM) can potentially reduce packet loss rate in the Internet. This is used by routers for control
congestion, where packets are dropped before queues become full. A number of active queue management algorithms for
TCP/IP networks such as random early detection (RED), Fair RED (FRED), BLUE, Stochastic Fair Blue (SFB), and Core-
stateless Fair Queuing (CSFQ) have been proposed in the past few years. This article presents a comparative study of these
algorithms using ns-2 simulations. The performance metrics used in the study are queue size, packet drop marking probability,
packet loss rate and bandwidth utilization. The study shows that BLUE is better than RED to avoid global synchronization for
maintaining single marking probability. And also, the results shows that, among the five algorithms, SFB and CSFQ are more
effective at stabilizing the queue size and controlling the packet loss rate among non-responsive flows while maintaining high
link utilization. The performance of SFB and CSFQ are obviously better than that of RED, FRED and BLUE.

Key words : Congestion Control, Fair Queue, Networks, Queue Management

PERFORMANCE ANALYSIS OF ACTIVE QUEUE MANAGEMENT ALGORITHMS

1 2
Santhi V. , Natarajan A.M.

1
Lecturer, Department of Computer Science and Engineering,

PSG College of Technology, Coimbatore, India
2
CEO, Bannari Amman Institute of Technology, Sathyamangalam, India.

1
Email: sannthi@yahoo.com

SFB, to detect the non-responsive flows and to
protect the other TCP flows from such flows based on
accounting mechanisms.

In CSFQ, edge routers compute per-flow rate
estimates and label the packets passing through them by
inserting these estimates into each packet header. Core
routers use FIFO queuing and keep no per-flow state.
They employ a probabilistic dropping algorithm that uses
the information in the packet labels along with the router's
own measurement of the aggregate traffic.

The rest of the paper is organized as follows. Section
II gives a description of RED, FRED, SFQ and shows why
it is ineffective at managing congestion. Section III
describes BLUE, Stochastic Fair BLUE and Core-
Stateless Fair Queuing and provides a detailed analysis.
Section IV describes evaluation of its performances based
on simulations. Finally, Section V concludes with a
discussion of future work.

II. BACKGROUND

One of the biggest problems with TCP's congestion
control algorithm over drop-tail queues is that sources
reduce their transmission rates only after detecting packet
loss due to queue overflow. Since a considerable amount
of time may elapse between the packet drop at the router
and its detection at the source, a large number of numbers
of packets may be dropped as the senders continue
transmission at a rate the network cannot support.

RED starts to probabilistically drop packets long
before the buffer is full, providing early congestion
indication to flows which can then gracefully back off
before the buffer overflows. RED maintains two buffer

19International Journal on , Vol.3, No.1, January 2009Information Sciences and Computing

thresholds. When the exponentially averaged buffer
occupancy is smaller than the first threshold, no packet is
dropped, and when the exponentially averaged buffer
occupancy is larger than the second threshold, all packets
are dropped. When the exponentially averaged buffer
occupancy is between the two thresholds, the packet
dropping probability increases linearly with buffer
occupancy. It is based on queue length as an estimator of
congestion and also requires a wide range of RED
parameters to operate correctly under different congestion
scenarios. Unfortunately, when a large number of TCP
sources are active, the aggregate traffic generated is
extremely bursty (3). Bursty traffic often defeats the active
queue management techniques used by RED since queue
lengths grow and shrink rapidly. While ECN (4) is
necessary for eliminating packet loss in the Internet, we
show that RED, even when used in conjunction with ECN,
is ineffective in preventing packet loss.

FRED extends RED to provide some degree of fair
bandwidth allocation. To achieve fairness, FRED
maintains state for all flows that have at least one packet in
the buffer. The dropping decision is based only on this flow
rather than the buffer state in RED. It requires large buffer
space to work well. Without sufficient buffer space, it
becomes difficult for FRED to detect non responsive flows.
(8)(5)

Stabilized RED is used to detect non responsive
flows. It keeps a finite log of recent flows it has seen. The
non responsive flows will always appear in the log multiple
times and can be signaled out for removing. It requires a
large buffer space

RED with Per-Flow Queuing takes per-flow queuing
and accounting information only for flows which are active.
It provides no savings in the amount of state required. If N
flows are active, O (N) state must be kept to isolate the
flows from each other.(12)

Stochastic Fair Queuing is similar to an SFB queue
with only one level of bins. The biggest difference is that,
instead of having separate queues, SFB uses the hash
function for accounting purposes. Thus, SFB has two
fundamental advantages over SFQ. The first is that it can
make better use of it buffers. SFB gets some statistical
multiplexing of buffer space to individual bins in order to
keep the buffer space fully utilized.

III. ACTIVE QUEUE MANAGEMENT ALGORITHMS

A. BLUE

In order to overcome the shortcomings of RED, a
fundamentally different queue management algorithm
called BLUE implemented. BLUE has been designed with
the objective to 1) minimize packet loss rates and queuing

delay; 2) avoid global synchronization of sources.

Algorithm:

BLUE uses the packet loss and the link utilization
history to manage congestion rather than on the
instantaneous or average queue lengths like RED. Also,
only a single marking probability is maintained, when the
queue is continually dropping packets due to buffer
overflow, this probability is incremented, and when the
queue is idle or empty, it is decremented. This effectively
allows BLUE to learn the correct rate it needs to send back
congestion notification. At the same time, the speed of
updating of the marking probability depends on a
parameter freeze_time. By choosing proper value of
freeze_time, we could prevent the p from oscillatingm

wildly. Fig. 1 shows the BLUE algorithm.

Upon packet loss (or Qlen > L) event :
If ((now – last_update) > freeze_time)

pm = pm +∂;1

Last_update = now;
Upon link idle event :
If ((now – last_update) > freeze_time)

pm = pm - ∂2

last_update = now;

Fig. 1. BLUE algorithm

B. STOCHASTIC FAIR BLUE

Up until recently, the Internet has mainly relied on the
cooperative nature of TCP congestion control in order to
limit packet loss and fairly share network resources.
Increasingly, however, new applications are being
deployed which do not use TCP congestion control and
are not responsive to the congestion signals given by the
network. Such applications are potentially dangerous
because they drive up the packet loss rates in the network
and can eventually cause congestion collapse. Stochastic
Fair BLUE (SFB), a novel technique for protecting TCP
flows against non responsive flows. Based on the BLUE
algorithm, SFB is highly scalable and enforces fairness
using an extremely small amount of state and a small
amount of buffer space.

Algorithm:

Fig. 2 shows SFB algorithm. SFB, to detect the non-
responsive flows and to protect the other TCP flows from
such flows based on accounting mechanisms. Router
manages N x L bins, and each newly arriving packet is
hashed with a different hashing function into one of N bins
from L levels. Each such bin maintains a marking/dropping
probability p as in BLUE. If the number of packetsm

mapped to a bin goes beyond a threshold, p ism

incremented. But if the number of packets drops to 0, p ism

20 International Journal on , Vol.3, No.1, January 2009Information Sciences and Computing

decreased. The intuition is that non-behaving flows would
quickly push the p in all the levels to 1. At the same time,m

for TCP flows, because of low frequency of their packets
compared to that of UDP flows, at least one layer will have
p < 1. If a flow has all its p = 1, it is marked as non-m m

responsive and its rate is limited. Fig. 3 shows an example
of SFB of how SFB works.

Fig. 2. SFB algorithm

Initialization()
Allocate 23 X 2 array of Bins (N X L)
(L levels, N bins per each level)
enque()
Calculate hashes h0, h1….hL -1
Update bins at each level

For i = 0 to L – 1
If each level of bin queue

length > bin_size

pm = pm + ∂1

Drop packet
else if each level of

bin queue length = 0

pm = pm – ∂2

If (pm = 1)
Rate limit of non responsive flow else

Mark probability with Pm

Fig. 3. Example of SFB

C. CORE STATELESS FAIR QUEUING

In this section, we know about architecture (Fig. 4)
that approximates the service provided by island of Fair
Queuing routers, it has a much lower complexity in the
core routers. The architecture has two key aspects. First,
to avoid maintaining per-flow state at each router, we use a
distributed algorithm in which only edge routers maintain
per-flow state, while core routers do not maintain per-flow
state but instead utilize the per-flow information carried via
a label in each packet's header. This label contains an
estimate of the flow's rate; it is initialized by the edge router
based on per-flow information, and then updated at each
router along the path based only on aggregate information
at that router.

 Fig. 4. Architecture of CSFQ

Second, to avoid per-flow buffering and scheduling,
as required by Fair Queuing, we used FIFO queuing with
probabilistic dropping on input. The probability of dropping
a packet as it arrives to the queue is a function of the rate
estimate carried in the label and of the fair share rate at that
router, which is estimated based on measurements of the
aggregate traffic.

The detailed design of this architecture:

1) Computation of Flow arrival Rate: The rates r (t) arei

estimated at the edge routers and then these rates are
inserted into the packet labels. At each edge router, use

k
exponential averaging to estimate the rate of a flow. Let t i

k
and l be the arrival time and length of the kth packet ofi

flow i. The estimated rate of flow I, ri, is updated every time
a new packet is received

- T k / K k k - T k / K
r (t) = (1 – e) l / T + e [1]i i i i i ri, old

where,

T k k k – 1
= t - ti i i

K is Constant

2) Link Fair rate Estimation: When the link is congested,
the fair rate f is computed such that the rate of the
aggregate forwarded rate equals the link capacity.

When the link is uncongested, f to be the maximum among
the arrival rates of the incoming flows (i.e., the largest label
of a packet seen during a certain period).

3) Computation of Packet Forwarding Rate: Upon a packet
arrival each node computes its forwarding probability P
based on the following formula

P = min (1, f / r) [2]

where r is the current estimated rate of the flow, which is
contained in the packet label, and f is the fair rate of the

Rate Estimator
+
Packet Llabel

Rate Estimator
+
Packet label

Core/Egress rout

Packet
Drop
-ping

Estimator

Ingress router

Flow1

Flown f

Buffer occupancy

Arr
&
Dep
rate

.

.

..

21Santhi V. et al : Performance Analysis of Active Queue Management Algorithms

output link. By forwarding the packet with probability P, the
expected rate of the flow's forwarded traffic is

r' = r X min (1, f / r) = min (f, r) [3]

4) Label Rewriting: To reflect the eventual change in flow's
rate, when a packet is forwarded its label is set to r' = min (f,
r). In this way we ensure the label consistency, i.e., at the
next node the label will still represent the estimate rate of
the flow's incoming traffic.

IV. SIMULATIONS AND RESULTS

In order to evaluate the performance of BLUE, SFB
and CSFQ, a number of simulation experiments were run
using ns-2 over a small network shown in Fig. 5 with
varying number of input nodes. Using this network, FTP
sources were run from one of the leftmost nodes to one of
the rightmost nodes. In addition, all sources were enabled
with ECN support, were randomly started within the first 1 s
of simulation. Packet loss statistics were then measured
after 100 s of simulation for 100s.

Fig. 5. Network topology

Marking probability of Blue

Fig. 6. Marking behavior of BLUE (p)m

Fig. 6 shows the, the marking behavior of BLUE. The
marking probability of RED changes considerably over
time and hence cannot remove synchronization among
sources. As a result, BLUE marks packets randomly and
evenly over time. Consequently, it does a better job in
avoiding global synchronization.

Marking Probability of SFB:

In this experiment, 200 TCP sources and one non
responsive, constant rate source are run for 100s from
randomly selected nodes in Fig. Fig. 8 shows the marking
probability of SFB.

Fig. .8 Marking Probability of SFB

Packet Loss rates of RED and BLUE for 100 sources
nodes:

Fig. 7. Packet loss rates of RED and BLUE (100 nodes)

Packet Loss Rates in SFB, CSFQ and FRED:

Fig. 9. Packet loss rates of CSFQ, SFB, and FRED

Fig. 9 shows the packet loss rates of FRED, SFB,
CSFQ. In this experiment, the loss rates observed over
same queue size (128 packets) and 10 Mbps link capacity
betweenAand B nodes in Fig. 5.

22 International Journal on , Vol.3, No.1, January 2009Information Sciences and Computing

Fig. 10. Packet loss rates of SFB, CSFQ, and FRED

Fig. 10 shows the loss rates observed over different queue
size (128 packets for FRED, CSFQ and 50 packets for
SFB) and 1 Mbps link capacity between A and B nodes in
Fig. 5. Both above experiments prove that the SFB gives
better performance than CSFQ and FRED. And also
CSFQ gives better performance than FRED.

Bandwidth utilization of SFB, CSFQ and FRED:

Fig. 11. Bandwidth Utilization of SFB, CSFQ, FRED
(1Mbps)

Fig. 11 shows the bandwidth utilization of SFB,
CSFQ, and FRED. This figure shows that SFB gives better
bandwidth utilization compared with CSFQ and FRED.
And also CSFQ makes use of better link capacity
compared with FRED. Suppose we increase the link
capacity above some extend, either CSFQ or SFB gives
better performance rather than the FRED.

Non-Responsive packet loss rates for SFB, CSFQ and
FRED:

The Non-Responsive flows are rate-limited to a fixed
amount of the link bandwidth. Fig. 12 shows the Non-
Responsive packet loss rates for SFB, CSFQ and FRED.

Fig. 12. Non-Responsive Packet loss rates of SFB,
CSFQ, and FRED

The above figure shows that CSFQ technique is used to
rate limit more number of non-responsive flows compared
with SFB. The CSFQ gives better performance rather than
the FRED and SFB. But SFB is better than the FRED. In
CSFQ, the maintaining of link state information at edge
router is simpler job compared with SFB.

V. CONCLUSION AND EXTENSION OF WORK

BLUE uses the packet loss and link utilization history
of congested queue, instead of queue lengths to manage
congestion. A SFB, a technique using BLUE for scalable
and accurately enforcing fairness amongst flows in a large
aggregate. Using SFB, non responsive flows can be
identified and rate-limited using a very small amount of
state. But in case of CSFQ, to use rate estimation at the
edge routers and packet labels to carry rate estimates to
core routers. Core routers merely perform probabilistic
dropping on input based on these labels and an estimate of
the fair share rate. Thus, the scheme trades off the
overhead in the packet header at every network link. In
addition to, it requires both the intermediate router and
edge devices adhere to the same labelling and dropping
algorithm. A misconfigured or poorly implemented edge
device and significantly impact the fair ness of the scheme.
SFB, on the other hand, does not rely on coordination
between intermediate routers and edge markers and can
perform will without placing additional overhead in packet
headers. This work will be extended into Differentiated
Services Network also.

REFERENCES

[1] W. Feng, D. Kandlur, D. Saha, and K. G. Shin, “The
BLUE active queue management”, IEEE/ACM
transactions on networking, vol 10, No. 4, August
2002.

[2] R. Braden, D. Clark, J. Crowcroft, B. Davie, S.
Deering, D. Estrin, S. Floyd, V. Jacobson, G.
Minsha l l , C . Par t r idge , L .Peterson , K .

23Santhi V. et al : Performance Analysis of Active Queue Management Algorithms

Ramakrishnan, S.Shenker, J. Wroclawski, and L.
Z h a n g , “ R e c o m m e n d a t i o n s o n q u e u e
management and congestion avoidance in the
Internet”, RFC 2309,Apr 1998.

[3] W. Feng, D. Kandlur, D. Saha, and K. G. Shin,
“Techniques for eliminating packet loss in congested
TCP/IP networks”, Univ. Michigan, Ann Arbor, MI,
Tech. Rep. UM CSE-TR-349-97, Oct. 1997.

[4] S. Floyd, “TCP and explicit congestion notification”,
Comput. Commun. Rev., vol. 24, no. 5, pp. 10-23,
Oct. 1994.

[5] K. Ramakrishnan and S. Floyd, “A proposal to add
Explicit Congestion Notification (ECN) to IP”, RFC
2481, Jan. 1999.

[6] Ion Stoica, Scott Shenkaer, and Fellow, “A Scalable
Architecture to approximate fair bandwidth allocation
in high speed networks”, IEEE/ACM Transactions on
networking, vol. 11, No. 1 February 2003.

[7] S. Floyd and K. Fall, “Promoting the use of end-to-
end congestion control in the Internet”, IEEE/ACM
Transaction on Networking, vol. 7, pp, 458-472,
August 99.

[8] S.Floyd and V. Jacobson, “Random early detection
for congestion avoidance”, IEEE/ACM Transactions
Networking, Vol. 1, pp 397-413, July 1993.

[9] V.Jacobson,“Congestion avoidance and control”, in
Proc.ACM SIGCOMM,Aug 1998, pp. 314-329.

Santhi .V

She has received M.E. degree in
Computer Science and Engineering
from Anna University in 2004. She
published 2 International Conference
papers and 2 National Conference
papers.

24 International Journal on , Vol.3, No.1, January 2009Information Sciences and Computing

