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Abstract

Key words:

Artificial Neural Network (ANN) is used to solve the differential equation used in RF Engineering. Solution of Poisson’s equation
and wave equation are illustrated as example with different boundary conditions like pure Dirichlet, pure Neumann and mixed
boundary condition. The formulation considers it as an optimization problem and therefore proposes solutions for both
constrained and unconstrained optimization. The results are compared with the analytical results computed using standard 
established methods and found to be in good agreement.
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I. INTRODUCTION

There are many boundary value problems in various
fields of engineering like image processing,
Electromagnetics, which involves partial differential
equation. Only of the few can be solved by analytical
methods. Generally, people depend on the numerical
methods to solve partial differential equation. Mostly, such
numerical methods are computationally slow and give a
good result of boundary value problems.

Artificial Neural Network [1-3] is in use for high-level
design, providing fast and accurate solutions to the task it
has learned. The use of neural networks provides
advantages like good generalization properties, less
model parameters than other methods, compact solution 
models and low demand on memory. The function
approximation properties of neural network [4-7] make it
attractive as trial solutions for differential equation for the 
boundary value problems. Hence it is supposed to be
capable of tackling differential equations in many
engineering problems.

In this paper solution of Poisson’s equation using
ANN is illustrated as example, using both constrained and
unconstrained optimization techniques. In the first case,
the original constrained optimization problem has to be
reduced to unconstrained optimization, which is easier to
handle due to the choice of the trial solution. In the latter
case the problem is tackled in a constrained manner and
care has been taken to meet the constraints like the
boundary conditions. InANN the weights and biases are to
be adjusted in order to deal with the minimization problem.

II. PROPOSED ANN TECHNIQUE FOR PARTIAL
DIFFERENTIAL EQUATION SOLUTION

In this section the general method to solve a partial
differential equation is discussed and the procedure can
be extending for the complex differential equations.

A. Unconstrained optimizationApproach

ANN has been used for solving ordinary and partial 
differential equation [4-6]. A trial solution is taken as the
sum of two terms The term

(1)

A(x,y) contains no adjustable parameters and
satisfies the boundary condition(s). N(x,y,wt) is a single-
output feed-forward neural network with parameters ‘wt’
and input units fed with the input vectors x, y . The second
term F is constructed in such a way so as not to contribute

to the Bc’s ?  (x, y). This term employs a neural network 

whose weights and biases are to be adjusted in order to
deal with the minimization problem. The original
constrained optimization problem now has been
simplified to an unconstrained one, since the choice of the
form of the trial solution satisfies the BC’s.

The function construction of F discussed above may
be difficult, as it is dependent on the differential equations.
This can be avoided by taking the trial solutions of the
differential equation to be N (x,y,wt) and constructing the
cost function by taking the error due to the equation and
the error due to the boundary. Minimizing the cost function
by training of the network shall determine the weights ‘wt’
for the problem at hand.

B. Constrained optimizationApproach

Alternatively, one may consider the simpler penalty
function method to solve the constrained optimization
problem. Other methods like Lagrange multipliers or
active set method, can also be used.

III. ILLUSTRATION OF THE METHODS FOR 
DIRICHLET BOUNDARY CONDITION

Consider the two-dimensional partial differential equation
(Poisson’s equation)
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(2)

[a] Solution using unconstrained optimization
approach

(3)

The boundary conditions are satisfied by constructing
A(x,y) as:

(4)

Then, the cost function is

(5)

Equation 5 is minimized [4, 8] to train the network.

[b] Solving using constrained optimizationApproach

Here ? (x, y) = N (x, y, wt) is taken as the trial solution oft

the neural network instead of equation (3), ‘wt’ is the weight
to be determined by training. In this method, two errors are
taken into account for the construction of error function one
due to the equation and the other due to the boundaries.

The equation error is given in equation (6) bellow.

(6)

As in this problem there are four boundaries,
therefore, the boundary errors are given by

(7)

(8)

(9)

(10)

The cost function for training the network is given by

(11)

Equation (11) is used for updating the weights of the neural
network. ë is the penalty factor the value is carefully
chosen depending on how accurately the boundary
condition is to be satisfied.

Illustrated Example:

Consider a two-dimensional Poisson’s equation

(12)

(13)

A feed forward neural network with back-propagation
algorithm [8,9,10] is used to train the network in a
sequential way.

IV. TRAINING THE ANN

The network is trained to minimize the cost function for the
unconstrained and constrained optimizations are equation
(5) and equation (11) respectively. The network is trained
according the equations (14)-(17).

(4)

(5)

(6)

(7)

Where, k is the iteration number, ij v are the weights from 
the input to hidden neuron (except for i = 0); i w are the

weights from hidden to output and j v0 is the threshold.η ,
α are the learning rate and momentum respectively.

Selection of a value for the learning rate parameterη, has

a significant effect on the network performance. Usually,η 
must be a small to ensure that the network will settle to a

solution. A small value ofη means the network will have to

make a large number of iterations. It is often possible to

increase the size of η as learning proceeds. The value of 
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alpha should be positive but less than 1 and represent the
momentum term.

V. RESULTS

? + ? +
The exact solution of the PDE is ? (x, y) xe x e x y3 

a

and is compared with the Neural Network output in both
the approaches i.e. unconstrained and constrained
optimization. The error, in proposed ANN solutions, is
calculated by the equation (18).

(18)

The number of input units, hidden neurons and output
neurons are two, six and one respectively. The transfer
function for the hidden neuron is tanh(.) and linear transfer
function is used for the output neurons. The network is
trained up to tolerance of 0.5 × 10-3 with ç = 0.05, á = 0.5.
In each case a graph is plotted for the analytical result,
ANN Result and error. Fig .1 shows the variation of
Analytical, ANN and error for the unconstrained
optimization with respect to (x, y).

Fig .1 Comparison of Analytical and ANN method using 
unconstrained optimization

Fig .2 Comparison of Analytical and ANN method using constrained 
optimization

Fig .2 shows the variation of Analytical, ANN and
error for the constrained optimization with respect to (x, y).
The network structure used for the constrained

optimization method is same as that of the unconstrained

approach. The network is trained up to tolerance 0.5× 10-

3 withη = 0.07,α = 0.5 andλ = 4.

Fig .3 Comparison of Analytical and ANN method using constrained 
optimization

Fig .3 shows the variation of Analytical, ANN and error for
the constrained optimization with respect to (x, y). The
same ANN, as used in the previous case, is used with a

penalty ofλ = 1.5.

Illustration of the methods for Neumann and mixed
boundary condition

Wave equation plays a major role in the RF
engineering. In this section, trials have been made to solve
the wave equation for the pure Neumann boundary
condition as well as for mixed boundary conditions. Here
we are not dealing with the pure Dirichlet boundary
conditions as its illustration for the Poisson’s equation is
already discussed. We will solve the pure Neumann
boundary condition with the unconstrained approach and 
the mixed boundary condition with the constrained
approach. The constrained optimization and the
unconstrained for the pure Neumann boundary conditions
and mixed boundary conditions can be dealt in the similar
way discussed for the Poisson’s equation.

[a] Unconstrained Approach for the Neumann
Boundary condition.

In order to use ANN we propose the solution of the

wave equation to be Φ such that it satisfies the wavet

equation as well as the boundary condition given by the
equations (19)-(21). ‘L’ is the length of the element.

(19)



77

(20)

(21)

With x∈[0,1] i.e. the input are normalized.

The trial solution of the wave equation is written as

(22)

Where N(x,L,wt) is the output of a feed forward network
with two inputs x for position coordinate , ‘L’ length and ‘wt’
is the weight vector of the ANN. By construction the trial
solution satisfies the two boundary conditions and the
constrained optimization problem is converted to
unconstrained optimization problem.

(23)

where (24)

(25)

The cost function of the network for training is given by
(26).

(26)

The square of the error is given by the expression E.

                 E = (Error)2 (27)

The weights of the network are trained according to the
normal back propagation algorithms and the weight
update equations are given by the equations (14) – (17).
Network structure: The network structure is 2-6-1 and the
transfer function for the hidden and output layer are ‘tanh
(.)’ and linear respectively. The network is trained upto a
tolerance of 10-4. The value of both á and ç in this model is
0.0008.

The accuracy of the method is checked by comparing the
result ofANN with that of the closed form solution (Figure

4). The results are in good agreement. The error is due to
the training error.

[b] Constrained Optimization Approach for the Mixed
Boundary condition.

Here we have taken the wave equation in the cylindrical

coordinate system for a circular element. Actually Ø is a
function of r, z and ö but the variation alongö , z is not taken
into account for symmetric problems with insignificant
contributions from z.

(28)

Transforming equation (28) into cylindrical coordinate
system.

(29)

Fig .4 Comparison of variation of ? t with normalized length of the 

element using Analytical and ANN model

Neglecting the variation in ? .

(30)

(31)

The boundary condition forΨ are given by equation (32)

and (33)

(32)

(33)

Here the boundary condition is considered to be mixed i.e.
combination of Dirichlet and Neumann. The penalty
function approach is used for the solution using ANN. The
trial solution is given below.

(34)
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The cost function to be minimized in this case is given by
equation 35.

(35)

Where, (36)

(37)

(38)

The error function to be minimized is given by equation
(35). The network is trained according to the normal back
propagation algorithms [7] and the weight updated
according to equations (14)-(16).

Fig .5 Comparison of variation of ? t with radius ‘r’ of the circular 

element using Analytical and ANN model

The network structure used is same as of the
pervious case with ç = 0.0018, á =0.008, Penalty factor ë =
4. In the neural network method, increasing the number of
hidden units can control the accuracy. In this approach
time increases linearly with the number of parameters.
Even if there are rules and standard algorithms, fixing
each parameter of the neural network structure is more of
an art than science. Human intervention at every step is
necessary during training. That is to say, it mostly depends
on experience

VI. CONCLUSION

A method has been discussed for solving differential
equations defined on orthogonal box boundaries that
relies upon the function approximation capabilities of feed-
forward neural networks and provides accurate and
differentiable solutions in a closed analytic form. This

method can be extended to three-dimensional problems. 
As the dimensionality increases, the number of training
points becomes large. This fact becomes a serious
problem for methods that consider local functions around
each grid point. In the case of the neural method, the
number of training parameters remains almost fixed as the
problem dimensionality increases. The penalty factor ë
should not be increased arbitrarily unless all parameters of
the network are normalized consistently. With simpler
construction of the trial solution, the constrained
optimization approach looks promising than the
unconstrained one.
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