
PROBABILISTIC MATCHSIMILARITY MEASURE FOR DOCUMENT CLUSTERING

Selvi K. 1, Suresh R.M. 2

1, Research Scholar, Sathyabama University, Chennai, India
2 Member, IEEE, Director, Chennai Institute of Technology, Chennai, India

1ssi.cse@rmkec.ac.in

Abstract —

Machine Learning captures the intrinsic characteristics of natural language, synonymy and polysemy. Investigations indicate
that Similarity Measure is fundamental to a variety of tasks such as Clustering. and Classification.Much work has been done
by researchers on document clustering with the use of semantic properties. In this paper, we develop a Probabilistic match
similarity measure that naturally extends the recently proposed Web-based kernel function which are trained and tested to
cluster the documents effectively. We consider two approaches to learning (similarity metric and preference ordering) and
both achieved higher precision scores as compared to all other similarity measures. This method works well for Web tasks
such as query/keyword matching and search query suggestion that rely heavily on the quality of similarity measures between
short text segments. We show that the learned measures are efficient at a wide range of scales and achieve better results
than existing similarity measures.

Key words: Text Mining, Similarity Measure, Machine Learning, Natural Language Processing, Document Clustering.

I. INTRODUCTION

The problem of measuring the similarity between two

very short text segments has become increasingly

important for many Web-related tasks. Examples of such

tasks include query reformulation (similarity between two

queries) , search advertising (similarity between the

user‟s query and advertiser‟s keywords), and product

keyword recommendation (similarity between the given

product name and suggested keyword). Measuring the

semantic similarity between two texts has been studied

extensively in the IR and NLP communities. However, the

problem of assessing the similarity between two short text

segments poses new challenges. Text segments

commonly found in these tasks range from a single word

to a dozen words. Because of the short length, the text

segments do not provide enough contexts for surface

matching methods such as computing the cosine score of

the two text segments to be effective. On the other hand,

because many text segments in these tasks contain more

than one or two words, traditional corpus-based word

similarity measures can fail too. These methods typically

rely on the co-occurrences of the two compared text

segments and, because of their lengths, they may not co-

occur in any documents even when using the whole Web

as the corpus. Finally, because of the diversity of the text

segments used in these Web applications, linguistic

thesauruses such as Word- Net do not cover a significant

fraction of the input text segments. In order to overcome

these difficulties, researchers have recently proposed

several new methods for measuring similarity of short text

segments (Sahami & Heilman 2006; Jones et al. 2006;

Metzler, Dumais, & Meek 2007). In this paper, we study

the problem of measuring similarity of short text

segments. In a general query suggestion scenario: given

a short text segment q and a list of suggestions {s1, s2,

..., sn}, we would like to rank suggestions based on their

similarity to q or select a subset of suggestions that are

similar to q. Our contributions are as follows. First, we

introduce a probabilistic match similarity measure which

improves the web-based kernel method (Sahami &

Heilman 2006) through a new term weighting scheme.

Instead of using the traditional TF×IDF score or its

variations, we use the “relevancy” of the words to the

document, estimated by a stateof-the-art keyword

extractor (Yih, Goodman, & Carvalho 2006). Second, in

order to leverage the strengths of different similarity

measures, we propose to combine them using machine

learning. In particular, we consider two learning

approaches: one directly models the similarity between a

query and a suggestion (q, si) and the other models the

preference ordering between two suggestions si and sj,

with respect to the same query q. Finally, we present an

experimental comparison between existing approaches

International Journal on Information Sciences and Computing Vol.9 No.2 July 2015 13

for measuring similarity between short text segments and

our enhanced similarity measures. The experiments

indicate that our methods are significantly better than

existing methods. The rest of the paper is organized as

follows. We first review existing methods for measuring

similarity of short text segments. We then introduce our

Web-relevance similarity measure and the proposed

learning approaches, followed by the experimental

evaluation.

II. RELATED WORK

Translation models, in a monolingual setting, have

been used for document retrieval [1], question answering

[10], and detecting text reuse [9]. The goal is to measure

the likelihood that some candidate document or sentence

is translation (or transformation) of the query. However,

such models are less likely to be effective on very short

segments of texts, such as queries, due to the difficulty

involved in estimating reliable translation probabilities for

such pieces of text. Query expansion is a common

technique used to convert an initial, typically short, query

into a richer representation of the information need

[7,12,16].This is accomplished by adding terms that are

likely to appear in relevant or pseudo-relevant documents

to the original query representation. In our query-query

matching work, we explore expanding both the original

and candidate query representations. Sahami and

Heilman proposed a method of enriching short text

representations that can be constructed as a form of

query expansion [13]. Their proposed method expands

short segments of text using web search results. The

similarity between two short segments of text can then

computed in the expanded representation space. The

expanded representation and DenseProb similarity

measure that we present in Sections 3 and 4 are similar

to this approach. However, we estimate term weights

differently and analyze how such expansion approaches

compare, in terms of efficiency and effectiveness, to

other standard information retrieval measures. Finally,

since we evaluate our techniques on a query-query

similarity task, it should be noted that this problem, and

the related problem of suggesting and identifying query-

query reformulations has been investigated from a

number of angles, ranging from machine learning

approaches [4] to query session log analysis[2].These

techniques are complimentary to the core

representational and similarity ideas that we explore in

our work.

Ling Zhuang Honghua Dai 2004 introduced the initial

points as centers for k-means algorithm. However, k-

means clustering is a completely unstructured approach,

sensitive to noise that produces an unorganized

collection of clusters not favorable to interpretation [8].

III. TEXT REPRESENTATIONS

Text representations are an important part of any

similarity measure. In this section, we describe three

different ways of representing text. Although these

representations can be applied to text of any length, we

are primarily interested in using them to represent short

segments of text.

A. SURFACE REPRESENTATION

The most basic representation of a short segment of

text is the surface representation (i.e. the text itself). Such

a representation is very sparse. However, it is very high

quality because no automatic or manual transformations

(such as stemming) have been done to alter it. While it is

possible that such transformations enhance the

representation, it is also possible that they introduce

noise.

B. STEMMED REPRESENTATION

Stemming is one of the most obvious ways to

generalize (normalize) text. For this reason, stemming is

commonly used in information retrieval systems as a

rudimentary device to overcome the vocabulary mismatch

problem. Various stemmers exist, including rule-based

stemmers [11] and statistical stemmers [5]. Although

stemming can significantly improve matching coverage, it

also introduces noise, which can lead to poor matches.

Using the Porter stemmer, both “marine vegetation” and

“marinated vegetables” stem to “marin veget”, which is

undesirable. Overall, however, the number of meaningful

matches introduced typically outweighs the number of

spurious matches. Throughout the remainder of this

paper, we use the Porter stemmer to generate all of our

stemmed representations.

C. EXPANDED REPRESENTATION

14 International Journal on Information Sciences and Computing Vol.9 No.2 July 2015

Although stemming helps overcome the vocabulary

mismatch problem to a certain extent, it does not handle

the contextual problem. It fails to discern the difference

between the meaning of “bank” in “Bank of America” and

“river bank”. Therefore, it is desirable to build

representations for the short text segments that include

contextually relevant information. One approach is to

enrich the representation using an external source of

information related to the query terms. Possible sources

of such information include web (or other) search results

returned by issuing the short text segment as a query,

relevant Wikipedia articles, and, if the short text segment

is a query, query reformulation logs. Each of these

sources provides a set of contextual text that can be used

to expand the original sparse text representation. In our

experiments, we use web search results to expand our

short text representations. For each short segment of

text, we run the query against a commercial search

engine‟s index and retrieve the top 200 results. The titles

and snippets associated with these results are then

concatenated and used as our expanded representation.

In Figure 1, we show a portion of the expanded

representation for the short text segment “apple pie”. As

we see, this expanded representation contains a number

of contextually relevant terms, such as “recipe”, “food”,

and “cooking” that are not present in the surface

representation. We note that this expanded

representation is similar to the one proposed in [11].

<query>apple pie</query>

<title>Applie pie – Wikipedia, the free
encyclopedia</title>

 <snippet>

In cooking, an apple pie is a fruit pie (or tart) in which the
principal filling ingredient is apples . Pastry is generally
used top-and-bottom, making a double-crust pie, the
upper crust of which

 ...</snippet>

<url>en.wikipedia.org/wiki/Apple_pie</url>

<title>All About Food – Apple Pies</title>

 <snippet>

Apple Pie. Recipes. All-American Apple Pie. American
Apple Pie. Amish Apple Pie .Apple Cream Pie. Apple
Crumble Pie. Apple Pie . Apple Pie in a Brown Bag. Best
Apple Pie</snippet>

<url>fp.enter.net/~rburk/pies/applepie/applepie.htm</url>

<title>Apple Pie Recipe</title>

<snippet>Apple Pie Recipe using apple peeler corer
slicer ... Apple Pie Recipe. From Scratch to Oven in 20-
Minutes. Start by preheating the oven. By the time it's
...</snippet>

<url>applesource.com/applepierecipe.htm</url>

Fig.1. Example expanded representation for the text
“apple pie.”

IV. OVERVIEW OF THE PROPOSED METHOD

In this section we describe three methods for

measuring the similarity between short segments of text.

These measures are motivated by, and make use of, the

representations described in the previous section. We

also propose a hybrid method of combining the ranking of

the various similarity measures in order to exploit the

strengths and weaknesses of each.

A. LEXICAL
The most basic similarity measures are purely

lexical. That is, they rely solely on matching the terms

present in the surface representations. Given two short

segments of text, Q and C, treating Q as the query and C

as the candidate we wish to measure the similarity of, we

define the following lexical matching criteria:

Exact – Q and C are lexically equivalent. (Q: “seattle
mariners tickets”, C:
“seattle mariners tickets”)

Phrase – C is a substring of Q. (Q: “seattle mariners
tickets”, C: “seattle
mariners”)

Subset – The terms in C are a subset of the terms in Q.
(Q: “seattle mariners
tickets”, C: “tickets seattle”)

These measures are binary. That is, two segments

of text either match (are deemed „similar‟) or they do not.

There is no graded score associated with the match.

However, if necessary, it is possible to impose such a

score by looking at various characteristics of the match

such as the length of Q and C, or the frequency of the

terms in some collection. Any candidate C that contains a

term that does not appear in the query Q will not match

under any of these rules, which is very undesirable.

International Journal on Information Sciences and Computing Vol.9 No.2 July 2015 15

Therefore, we expect that matches generated using these

lexical rules will be have high precision but poor recall.

B. PROBABILISTIC

As we just described, lexical matching alone is not

enough to produce a large number of relevant matches.

In order to improve recall, we must make use of the

expanded text representations as shown in Fig.1. To do

so, we use the language modeling framework to model

query and candidate texts. To utilize the framework, we

must estimate unigram language models for the query

(θQ) and each candidate (θC). For ranking purposes, we

use the negative KL divergence between the query and

candidate model, which is commonly used in the

language modeling framework [14]. This results in the

following ranking function:

where V is the vocabulary, H is entropy, CE is cross

entropy, and ≡ denotes rank equivalence. The critical

part of the ranking function is how the query and

candidate language models are estimated. Different

estimates can lead to radically different rankings. We now

describe how we estimate these models using the

representations available to us.

Query Terms Preference Ordering i

Expanded Representation

Apply Lexical Similarity
Measures

Store final weights for
iterative CLustering

Fig.1. Proposed Architecture

A disadvantage of the above method is that it

requires short text segments. A threshold on the

similarity measure greatly affects the final clustering

and therefore might impose a structure on the given data,

instead of detecting any existing structure.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the similarity measures

proposed in Section 4. We begin by showing some

illustrative examples of matches generated using our

algorithms. We then formally evaluate the methods in the

context of a query-query similarity task which captures all

the characteristics before Clustering. Assuming that the

documents already preprocessed and the vector

representation exists, the word pair is converted into

vector and processed with final weights obtained from an

Probabilistic Similarity Measure. The outputs in the output

layer are well interpreted whether the documents

retrieved or clustered are relevant to the words in order to

evaluate the quality of the implemented algorithms for

document clustering. The results of the final weights with

their similarity scores is shown in Figure 2.

Fig.2. Similarity Measure with stored weights

We now describe our query-query similarity

experiments. Here, we are interested in evaluating how

well the various methods we described in Section 4 can

be used to find queries that are similar to some target

query. This task is a general task that is widely

applicable. For example, such a query-query similarity

system could be used to recommend alternative queries

to users of a web search engine or for session boundary

detection in query log analysis.

A. DATA DESCRIPTION

The following data resources were used in our

experimental evaluation. A sample of 363,822 popular

queries drawn from a 2005 MSN Search query log was

used as our candidate pool of queries to match against.

For each query, we generated an expanded

representation, as described in Section 3.3. In our

16 International Journal on Information Sciences and Computing Vol.9 No.2 July 2015

experiments, we set μQ to 0 and μC to 2500. To handle

this amount of data, we built an index out of the

expanded representations using the Indri search system

[14]. We also randomly sampled a set of 120 queries

from the same log to use as target queries. These target

queries were then matched against the full set of 363k

queries. For each of these target queries, we ran the

methods described in Section 4 and pooled the results

down to a depth of 25 per method. A single human

assessor then judged the relevance of each candidate

result with respect to the target query using a 4-point

judgment scale. Table 3 provides a description and

examples of each type of judgment. The result of this

assessment was 5231 judged target/candidate pairs. Of

these judgments, 317 (6%) were Excellent, 600 (11%)

were Good, 2537 (49%) were Fair, and 1777 (34%) were

Bad. In order to determine the reliability of the judgments,

four assessors judged 10 target queries. The inter-

annotator agreement was then computed for these

queries and was found to be 60%. However, when

Excellent and Good judgments were binned and Fair and

Bad judgments were binned, the agreement increased to

80%. This indicates the boundary between Fair and Bad

is interpreted differently among users. For this reason, we

will primarily focus our attention on the boundary between

Excellent and Good and between Good and Fair. In

addition, the Excellent and Good matches are the most

interesting for many practical applications including query

suggestion and sponsored search.

B EVALUATION

We are interested in understanding how our

matching methods compare to each other across various

relevance criteria. Since we are interested in using

standard information retrieval metrics, such as precision

and recall, we must binarize the relevance judgments.

For each experiment, we state the relevance criteria

used.

Judgment Description

Excellent The candidate is semantically
equivalent

to the user query.
 Good

The candidate is related to (but not
identical to) the query intent and it
is likely the user would be
interested in the candidate.

Fair

The candidate is related to the query
intent, but in an overly vague or
specific manner that results in the
user having little, if any, interest in
the candidate.

 Bad
The candidate is unrelated to the
query intent.

Table.1 Judgment Description Examples (Query / Candidate)

The candidate is semantically equivalent to the user

query.atlanta ga / atlanta Georgia - Good. The candidate

is related to (but not identical to) the query intent and it is

likely the user would be interested in the candidate.

seattle mariners / seattle baseball tickets –Fair. The

candidate is related to the query intent, but in an overly

vague or specific manner that results in the user having

little, if any, interest in the candidate. hyundia azera /

new york car show – Bad The candidate is unrelated to

the query intent.

We first evaluate the methods using precision-recall

graphs using two different relevance criteria. The results

are given in Figure 2. For the case when Excellent

matches are considered relevant (left panel), we see that

the Lexical and Stemming methods outperform the

probabilistic methods, especially at lower recall levels.

This is not surprising, since we expect lexical matches to

easily find most of the Excellent matches. In addition, we

see that Stemming consistently outperforms the Lexical

method. However, the Back-off method dominates the

other methods at all recall levels. This results from

backing off from stricter matches to less strict matches.

For example, for the query “atlanta ga”, the Lexical

method will match “atlanta ga”, but neither the Lexical nor

the Stemming methods will match “atlanta georgia",

which is actually an Excellent match that is found using

the Dense Prob. method. When we relax the relevance

criteria and consider both Excellent and Good judgments

to be relevant (right panel), we see an interesting shift in

the graph. Here, the probabilistic methods, Sparse-Prob

and Dense-Prob, outperform the Lexical and Stemming

methods at all recall levels, except very low levels. We

further test this hypothesis later in this section. However,

once again, we see that the Back-off method outperforms

all of the methods at all recall levels. One reason why the

Back-off method is superior to the non-hybrid probabilistic

methods is the fact that the Sparse-Prob and Dense-Prob

International Journal on Information Sciences and Computing Vol.9 No.2 July 2015 17

methods often fail to return exact matches high in the

ranked list. This is caused by truncating the expanded

query distribution before computing the KL divergence.

By forcing the exact and exact stems matches to occur

first, we are „stacking the deck‟ and promoting matches

that are likely to be high precision. This combined with

the high recall of the Dense-Prob method, results in a

superior matching method. It is clear that exact matches

are very likely to result in excellent matches. However, it

is not clear how phrase and subset lexical matches

compare to stemming and probabilistic matches. To

measure this, we compute the precision at k for the

Lexical and Back-off methods, where k is the number of

results returned by the query.

k Queries Lexical Back-off

1 40 0.7500 0.8125

2 38 0.3235 0.4853

3 31 0.2688 0.4194

Table 2. Precision at k, where k is the number of matches
returned using the Lexical method.

In this table, the evaluation set of queries was

stratified according to k. Queries indicates the number of

queries associated with each k. Only values of k

associated with 10 or more. Table.2. Interpolated, 11-

point precision-recall curves for the five matching

methods described in Section 4. On the left, candidates

judged „Excellent‟ are considered relevant. On the right,

candidates judged „Excellent‟ or „Good‟ are considered

relevant. Lexical method. This evaluation allows us to

quantify the improvement achieved by replacing the low

precision phrase and subset matches with the high

precision exact stems matches and high recall Dense

Prob matches. We stratify the queries with respect to k,

the number of Lexical method matches for the query, and

compute precision at depth k over these queries. We only

include values of k associated with 10 or more queries,

since it misleading to compute and compare means over

smaller samples. As the results show, the Back-off

method is superior in every case. This suggests that the

stemming and probabilistic matches (used in the Back-off

method) are considerably better at finding both Excellent

and Good matches compared to the phrase and subset

matches (used in the Lexical method).

C EFFECTIVENESS VS EFFICIENCY

One important practical aspect of the techniques

developed is efficiency. Generating lexical and stemming

matches is very efficient. The probabilistic methods are

slower, but not unreasonable. Generating matches

against our collection of 363,822 candidates using a

modern single CPU machine takes 0.15 seconds per

query using the Sparse-Prob method and 3 seconds per

query using the Dense-Prob method. The Dense-Prob

method requires, apriori, an index of expanded

representations for both the candidates and the incoming

queries. If we are asked to generate Dense-Prob

matches for a query that is not in our index, then we must

generate this representation on the fly. However, the

Sparse-Prob method does not exhibit this behavior and

can be used to efficiently generate matches for any

incoming query. Therefore, Sparse-Prob is the best

choice in terms of speed and coverage. However, if

speed is not an issue, and high quality results are

important, then Dense-Prob is the better choice.

VI.CONCLUSION

Web tasks such as query/keyword matching and

search query suggestion rely heavily on the quality of

similarity measures between short text segments. We

consider two learning approaches: one directly models

the similarity between a query and a suggestion (q, si)

and the other models the preference ordering between

two suggestions si and sj, with respect to the same query

q. Finally, we present an experimental comparison

between existing approaches for measuring similarity

between short text segments and our enhanced similarity

measures. The experiments indicate that our methods

are significantly better than existing methods

ACKNOWLEDGMENT

I owe my sincere thanks to my Co-author and guide

Dr. R.M. Suresh for his valuable mentoring and guidance

in preparing this paper and helping me with valid

suggestions and directing me in the correct path.

REFERENCES

[1] Berger, A. and Lafferty, J. Information retrieval as statistical
translation. In Proceedings of SIGIR ‟99, pages 222-229, 1999.

18 International Journal on Information Sciences and Computing Vol.9 No.2 July 2015

[2] Cucerzan, S. and Brill, E. Extracting semantically related
queries by exploiting user session information. Technical
Report, Microsoft Research, 2005.

[3] Deerwester, S., Dumais, S., Landauer, T., Furnas, G. and
Harshman, R. Indexing by latent semantic analysis. In JASIST,
41(6), pages 391-407, 1990.

[4] Jones, R. Generating query substitutions. In Proceedings of
WWW 2006, pages 387-396,2006.

[5] Krovetz, R. Viewing morphology as an inference process. In
Proceedings of SIGIR ‟93, pages 191-202, 1993.

[6] K.Selvi, R.M.Suresh “Context Similarity Measure Using Fuzzy
Formal Concept Analysis” In Proc. of The Second Int‟l
conference On Computer Science and Engineering and
Information Technology CCSEIT-2012, Pages 416-423,2012.

[7] Lavrenko, V. and Croft, W.B. Relevance based language
models. In Proceedings of SIGIR „01, pages 120-127, 2001.

[8]. Ling Zhuang, Honghua Dai., 2004, A Maximal Frequent Item Set
Approach for Web Document Clustering In Proceedings of the
IEEE Fourth International Conference on Computer and
Information Technology

[9] Metzler, D., Bernstein, Y., Croft, W.B., Moffat, A., and Zobel, J.
Similarity measures for tracking information flow. In Proceedings
of CIKM „05, pages 517-524, 2005.

[10] Murdock, V. and Croft, W.B. A Translation Model for Sentence
Retrieval. In Proceedings of HLT/EMNLP „05, pages 684-691,
2005.

[11] Porter, M. F. An algorithm for suffix stripping. Program, 14(3),
pages 130-137, 1980.

[12] Rocchio, J. J. Relevance Feedback in Information Retrieval,
pages 313-323. Prentice-Hall, 1971.

[13] Sahami, M. and Heilman, T. A web-based kernel function for
measuring the similarity of short text snippets. In Proceedings of
WWW 2006, pages 377-386, 2006.

[14] Strohman, T., Metzler, D., Turtle, H., Croft, W. B. Indri: A
language model-based search engine for complex queries. In
Proceedings of the International Conference on Intelligence
Analysis, 2005.

[15] Zhai, C. and Lafferty, J. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proceedings of SIGIR „01, pages 334-342, 2001.

[16] Zhai, C. and Lafferty, J. Model-based feedback in the language
modeling approach to information retrieval. In Proceedings of
CIKM „01, pages 403-410, 2001

.

.

International Journal on Information Sciences and Computing Vol.9 No.2 July 2015 19

