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Abstract — 

Machine Learning captures the intrinsic characteristics of  natural language,  synonymy and polysemy. Investigations indicate 
that Similarity Measure is fundamental to a variety of tasks such as Clustering. and Classification.Much work has been done 
by researchers on document clustering with the use of semantic properties. In this paper, we develop a Probabilistic match 
similarity measure that naturally extends the recently proposed Web-based kernel function which are trained and tested to 
cluster  the documents effectively. We consider two approaches to learning (similarity metric and preference ordering) and 
both achieved higher precision scores as compared to all other similarity measures. This method works well for Web tasks 
such as query/keyword matching and search query suggestion that  rely heavily on the quality of similarity measures between 
short text segments. We show that the learned measures are efficient at a wide range of scales and achieve better results 
than existing similarity measures. 
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I. INTRODUCTION 

The problem of measuring the similarity between two 

very short text segments has become increasingly 

important for many Web-related tasks. Examples of such 

tasks include query reformulation (similarity between two 

queries) , search advertising (similarity between the 

user‟s query and advertiser‟s keywords), and product 

keyword recommendation (similarity between the given 

product name and suggested keyword). Measuring the 

semantic similarity between two texts has been studied 

extensively in the IR and NLP communities. However, the 

problem of assessing the similarity between two short text 

segments poses new challenges. Text segments 

commonly found in these tasks range from a single word 

to a dozen words. Because of the short length, the text 

segments do not provide enough contexts for surface 

matching methods such as computing the cosine score of 

the two text segments to be effective. On the other hand, 

because many text segments in these tasks contain more 

than one or two words, traditional corpus-based word 

similarity measures can fail too. These methods typically 

rely on the co-occurrences of the two compared text 

segments and, because of their lengths, they may not co-

occur in any documents even when using the whole Web 

as the corpus. Finally, because of the diversity of the text 

segments used in these Web applications, linguistic 

thesauruses such as Word- Net do not cover a significant 

fraction of the input text segments. In order to overcome 

these difficulties, researchers have recently proposed 

several new methods for measuring similarity of short text 

segments (Sahami & Heilman 2006; Jones et al. 2006; 

Metzler, Dumais, & Meek 2007). In this paper, we study 

the problem of measuring similarity of short text 

segments. In a general query suggestion scenario: given 

a short text segment q and a list of suggestions {s1, s2, 

..., sn}, we would like to rank suggestions based on their 

similarity to q or select a subset of suggestions that are 

similar to q. Our contributions are as follows. First, we 

introduce a probabilistic match similarity measure which 

improves the web-based kernel method (Sahami & 

Heilman 2006) through a new term weighting scheme. 

Instead of using the traditional TF×IDF score or its 

variations, we use the “relevancy” of the words to the 

document, estimated by a stateof-the-art keyword 

extractor (Yih, Goodman, & Carvalho 2006). Second, in 

order to leverage the strengths of different similarity 

measures, we propose to combine them using machine 

learning. In particular, we consider two learning 

approaches: one directly models the similarity between a 

query and a suggestion (q, si) and the other models the 

preference ordering between two suggestions si and sj, 

with respect to the same query q. Finally, we present an 

experimental comparison between existing approaches 
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for measuring similarity between short text segments and 

our enhanced similarity measures. The experiments 

indicate that our methods are significantly better than 

existing methods. The rest of the paper is organized as 

follows. We first review existing methods for measuring 

similarity of short text segments. We then introduce our 

Web-relevance similarity measure and the proposed 

learning approaches, followed by the experimental 

evaluation. 

II. RELATED WORK 

Translation models, in a monolingual setting, have 

been used for document  retrieval [1], question answering 

[10], and detecting text reuse [9]. The goal is to measure 

the likelihood that some candidate document or sentence 

is  translation (or transformation) of the query. However, 

such models are less likely to be effective on very short 

segments of texts, such as queries, due to the difficulty 

involved in estimating reliable translation probabilities for 

such pieces of text. Query expansion is a common 

technique used to convert an initial, typically short, query 

into a richer representation of the information need 

[7,12,16].This is accomplished by adding terms that are 

likely to appear in relevant or pseudo-relevant documents 

to the original query representation. In our query-query 

matching work, we explore expanding both the original 

and candidate query representations. Sahami and 

Heilman proposed a method of enriching short text 

representations that can be constructed as a form of 

query expansion [13]. Their proposed method expands 

short segments of text using web search results. The 

similarity between two short segments of text can then 

computed in the expanded representation space. The 

expanded representation and DenseProb similarity 

measure that we present in Sections 3 and 4 are similar 

to this approach. However, we estimate term weights 

differently and analyze how such expansion approaches 

compare, in terms of efficiency and effectiveness, to  

other standard information retrieval measures. Finally, 

since we evaluate our techniques on a query-query  

similarity task, it should be noted that this problem, and 

the related problem of suggesting and identifying query-

query reformulations has been investigated from a  

number of angles, ranging from machine learning 

approaches [4] to query session log analysis[2].These 

techniques are complimentary to the core 

representational and similarity ideas that we explore in 

our work. 

Ling Zhuang Honghua Dai 2004 introduced the initial 

points as centers for k-means algorithm. However, k-

means clustering is a completely unstructured approach, 

sensitive to noise that produces an unorganized 

collection of clusters  not favorable to interpretation [8]. 

III. TEXT REPRESENTATIONS 

Text representations are an important part of any 

similarity measure. In this section, we describe three 

different ways of representing text. Although these 

representations can be applied to text of any length, we 

are primarily interested in using them to represent short 

segments of text. 

A. SURFACE REPRESENTATION 

The most basic representation of a short segment of 

text is the surface representation (i.e. the text itself). Such 

a representation is very sparse. However, it is very high 

quality because no automatic or manual transformations 

(such as stemming) have been done to alter it. While it is 

possible that such transformations enhance the 

representation, it is also possible that they introduce 

noise.  

B.  STEMMED REPRESENTATION 

Stemming is one of the most obvious ways to 

generalize (normalize) text. For this reason, stemming is 

commonly used in information retrieval systems as a 

rudimentary device to overcome the vocabulary mismatch 

problem. Various stemmers exist, including rule-based 

stemmers [11] and statistical stemmers [5]. Although 

stemming can significantly improve matching coverage, it 

also introduces noise, which can lead to poor matches. 

Using the Porter stemmer, both “marine vegetation” and 

“marinated vegetables” stem to “marin veget”, which is 

undesirable. Overall, however, the number of meaningful 

matches introduced typically outweighs the number of 

spurious matches. Throughout the remainder of this 

paper, we use the Porter stemmer to generate all of our 

stemmed representations. 

C.  EXPANDED REPRESENTATION 
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Although stemming helps overcome the vocabulary 

mismatch problem to a certain extent, it does not handle 

the contextual problem. It fails to discern the difference 

between the meaning of “bank” in “Bank of America” and 

“river bank”. Therefore, it is desirable to build 

representations for the short text segments that include 

contextually relevant information. One approach is to 

enrich the representation using an external source of 

information related to the query terms. Possible sources 

of such information include web (or other) search results 

returned by issuing the short text segment as a query, 

relevant Wikipedia articles, and, if the short text segment 

is a query, query reformulation logs. Each of these 

sources provides a set of contextual text that can be used 

to expand the original sparse text representation. In our 

experiments, we use web search results to expand our 

short text representations. For each short segment of 

text, we run the query against a commercial search 

engine‟s index and retrieve the top 200 results. The titles 

and snippets associated with these results are then 

concatenated and used as our expanded representation. 

In Figure 1, we show a portion of the expanded 

representation for the short text segment “apple pie”. As 

we see, this expanded representation contains a number 

of contextually relevant terms, such as “recipe”, “food”, 

and “cooking” that are not present in the surface 

representation. We note that this expanded 

representation is similar to the one proposed in [11]. 

<query>apple pie</query> 

<title>Applie pie – Wikipedia, the free  
encyclopedia</title> 

       <snippet> 

In cooking, an apple pie is a fruit pie (or tart ) in which the 
principal filling ingredient is apples . Pastry is generally 
used top-and-bottom, making a double-crust pie, the 
upper crust of which 

           ...</snippet> 

<url>en.wikipedia.org/wiki/Apple_pie</url> 

<title>All About Food – Apple Pies</title> 

           <snippet> 

Apple Pie. Recipes. All-American Apple Pie. American 
Apple Pie. Amish Apple Pie .Apple Cream Pie. Apple 
Crumble Pie. Apple Pie . Apple Pie in a Brown Bag. Best 
Apple  Pie</snippet> 

<url>fp.enter.net/~rburk/pies/applepie/applepie.htm</url> 

<title>Apple Pie Recipe</title> 

<snippet>Apple Pie Recipe using apple peeler corer 
slicer ... Apple Pie Recipe. From Scratch to Oven in 20-
Minutes. Start by preheating the oven. By the time it's 
...</snippet> 

<url>applesource.com/applepierecipe.htm</url> 

Fig.1. Example expanded representation for the text 
“apple pie.”  

IV.  OVERVIEW OF THE PROPOSED METHOD 

In this section we describe three methods for 

measuring the similarity between short segments of text. 

These measures are motivated by, and make use of, the 

representations described in the previous section. We 

also propose a hybrid method of combining the ranking of 

the various similarity measures in order to exploit the 

strengths and weaknesses of each. 

A.  LEXICAL 
The most basic similarity measures are purely 

lexical. That is, they rely solely on matching the terms 

present in the surface representations. Given two short 

segments of text, Q and C, treating Q as the query and C 

as the candidate we wish to measure the similarity of, we 

define the following lexical matching criteria: 

Exact – Q and C are lexically equivalent. (Q: “seattle 
mariners tickets”, C: 
“seattle mariners tickets”) 

Phrase – C is a substring of Q. (Q: “seattle mariners 
tickets”, C: “seattle 
mariners”) 

Subset – The terms in C are a subset of the terms in Q. 
(Q: “seattle mariners 
tickets”, C: “tickets seattle”) 

These measures are binary. That is, two segments 

of text either match (are deemed „similar‟) or they do not. 

There is no graded score associated with the match. 

However, if necessary, it is possible to impose such a 

score by looking at various characteristics of the match 

such as the length of Q and C, or the frequency of the 

terms in some collection. Any candidate C that contains a 

term that does not appear in the query Q will not match 

under any of these rules, which is very undesirable. 
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Therefore, we expect that matches generated using these 

lexical rules will be have high precision but poor recall. 

B. PROBABILISTIC 

As we just described, lexical matching alone is not 

enough to produce a large number of relevant matches. 

In order to improve recall, we must make use of the 

expanded text representations as shown in Fig.1. To do 

so, we use the language modeling framework to model 

query and candidate texts. To utilize the framework, we 

must estimate unigram language models for the query 

(θQ) and each candidate (θC). For ranking purposes, we 

use the negative KL divergence between the query and 

candidate model, which is commonly used in the 

language modeling framework [14]. This results in the 

following ranking function:  

where V is the vocabulary, H is entropy, CE is cross 

entropy, and ≡ denotes rank  equivalence. The critical 

part of the ranking function is how the query and 

candidate language models are estimated. Different 

estimates can lead to radically different rankings. We now 

describe how we estimate these models using the 

representations available to us. 

Query Terms Preference Ordering i

Expanded Representation

Apply  Lexical  Similarity 
Measures

Store final weights for 
iterative CLustering

Fig.1. Proposed Architecture 

A disadvantage of the above method is that it 

requires   short text segments. A threshold on the 

similarity  measure greatly  affects the final  clustering 

and therefore might impose a structure on the given data, 

instead of  detecting any existing structure. 

V.  EXPERIMENTAL EVALUATION 

In this section we evaluate the similarity measures 

proposed in Section 4. We begin by showing some 

illustrative examples of matches generated using our 

algorithms. We then formally evaluate the methods in the 

context of a query-query similarity task which captures all 

the characteristics before Clustering. Assuming that the 

documents already preprocessed and the vector 

representation exists, the word pair is converted into 

vector and processed with final weights obtained from an 

Probabilistic Similarity Measure. The outputs in the output 

layer are well interpreted whether the documents 

retrieved or clustered are relevant to the words in order to 

evaluate the quality of the implemented algorithms for 

document clustering. The results  of the final weights with 

their similarity scores is shown in Figure 2.  

Fig.2. Similarity Measure with stored weights 

We now describe our query-query similarity 

experiments. Here, we are interested in evaluating how 

well the various methods we described in Section 4 can 

be used to find queries that are similar to some target 

query. This task is a general task that is widely 

applicable. For example, such a query-query similarity 

system could be used to recommend alternative queries 

to users of a web search engine or for session boundary 

detection in query log analysis. 

A. DATA DESCRIPTION 

The following data resources were used in our 

experimental evaluation. A sample of 363,822 popular 

queries drawn from a 2005 MSN Search query log was 

used as our candidate pool of queries to match against. 

For each query, we generated an expanded 

representation, as described in Section 3.3. In our 
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experiments, we set μQ to 0 and μC to 2500. To handle 

this amount of data, we built an index out of the 

expanded representations using the Indri search system 

[14]. We also randomly sampled a set of 120 queries 

from the same log to use as target queries. These target 

queries were then matched against the full set of 363k 

queries. For each of these target queries, we ran the 

methods described in Section 4 and pooled the results 

down to a depth of 25 per method. A single human 

assessor then judged the relevance of each candidate 

result with respect to the target query using a 4-point 

judgment scale. Table 3 provides a description and 

examples of each type of judgment. The result of this 

assessment was 5231 judged target/candidate pairs. Of 

these judgments, 317 (6%) were Excellent, 600 (11%) 

were Good, 2537 (49%) were Fair, and 1777 (34%) were 

Bad. In order to determine the reliability of the judgments, 

four assessors judged 10 target queries. The inter-

annotator agreement was then computed for these 

queries and was found to be 60%. However, when 

Excellent and Good judgments were binned and Fair and 

Bad judgments were binned, the agreement increased to 

80%. This indicates the boundary between Fair and Bad 

is interpreted differently among users. For this reason, we 

will primarily focus our attention on the boundary between 

Excellent and Good and between Good and Fair. In 

addition, the Excellent and Good matches are the most 

interesting for many practical applications including query 

suggestion and sponsored search.  

B EVALUATION 

We are interested in understanding how our 

matching methods compare to each other across various 

relevance criteria. Since we are interested in using 

standard information retrieval metrics, such as precision 

and recall, we must binarize the relevance judgments. 

For each experiment, we state the relevance criteria 

used. 

Judgment Description 

Excellent The candidate is semantically 
equivalent 

to the user query. 
   Good 

The candidate is related to (but not 
identical to) the query intent and it 
is likely the user would be 
interested in the candidate. 

Fair 

The candidate is related to the query 
intent, but in an overly vague or 
specific manner that results in the 
user having little, if any, interest in 
the candidate. 

   Bad 
The candidate is unrelated to the 
query intent. 

Table.1 Judgment Description Examples (Query / Candidate) 

The candidate is semantically equivalent to the user 

query.atlanta ga / atlanta Georgia  - Good. The candidate 

is related to (but not identical to) the query intent and it is 

likely the user would be interested in the candidate. 

seattle mariners / seattle baseball tickets –Fair. The 

candidate is related to the query intent, but in an overly 

vague or specific manner that results in the user having 

little, if any, interest in the candidate. hyundia azera /  

new york car show – Bad The candidate is unrelated to 

the query intent. 

We first evaluate the methods using precision-recall 

graphs using two different relevance criteria. The results 

are given in Figure 2. For the case when Excellent 

matches are considered relevant (left panel), we see that 

the Lexical and Stemming methods outperform the 

probabilistic methods, especially at lower recall levels. 

This is not surprising, since we expect lexical matches to 

easily find most of the Excellent matches. In addition, we 

see that Stemming consistently outperforms the Lexical 

method. However, the Back-off method dominates the 

other methods at all recall levels. This results from 

backing off from stricter matches to less strict matches. 

For example, for the query “atlanta ga”, the Lexical 

method will match “atlanta ga”, but neither the Lexical nor 

the Stemming methods will match “atlanta georgia", 

which is actually an Excellent match that is found using 

the Dense Prob. method. When we relax the relevance 

criteria and consider both Excellent and Good judgments 

to be relevant (right panel), we see an interesting shift in 

the graph. Here, the probabilistic methods, Sparse-Prob 

and Dense-Prob, outperform the Lexical and Stemming 

methods at all recall levels, except very low levels. We 

further test this hypothesis later in this section. However, 

once again, we see that the Back-off method outperforms 

all of the methods at all recall levels. One reason why the 

Back-off method is superior to the non-hybrid probabilistic 

methods is the fact that the Sparse-Prob and Dense-Prob 
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methods often fail to return exact matches high in the 

ranked list. This is caused by truncating the expanded 

query distribution before computing the KL divergence. 

By forcing the exact and exact stems matches to occur 

first, we are „stacking the deck‟ and promoting matches 

that are likely to be high precision. This combined with 

the high recall of the Dense-Prob method, results in a 

superior matching method. It is clear that exact matches 

are very likely to result in excellent matches. However, it 

is not clear how phrase and subset lexical matches 

compare to stemming and probabilistic matches. To 

measure this, we compute the precision at k for the 

Lexical and Back-off methods, where k is the number of 

results returned by the query. 

k Queries Lexical Back-off 

1 40 0.7500 0.8125 

2 38 0.3235 0.4853 

3 31 0.2688 0.4194 

Table 2. Precision at k, where k is the number of matches 
returned using the Lexical method. 

In this table, the evaluation set of queries was 

stratified according to k. Queries indicates the number of 

queries associated with each k. Only values of k 

associated with 10 or more. Table.2. Interpolated, 11-

point precision-recall curves for the five matching 

methods described in Section 4. On the left, candidates 

judged „Excellent‟ are considered relevant. On the right, 

candidates judged „Excellent‟ or „Good‟ are considered 

relevant. Lexical method. This evaluation allows us to 

quantify the improvement achieved by replacing the low 

precision phrase and subset matches with the high 

precision exact stems matches and high recall Dense 

Prob matches. We stratify the queries with respect to k, 

the number of Lexical method matches for the query, and 

compute precision at depth k over these queries. We only 

include values of k associated with 10 or more queries, 

since it misleading to compute and compare means over 

smaller samples. As the results show, the Back-off 

method is superior in every case. This suggests that the 

stemming and probabilistic matches (used in the Back-off 

method) are considerably better at finding both Excellent 

and Good matches compared to the phrase and subset 

matches (used in the Lexical method). 

C   EFFECTIVENESS VS  EFFICIENCY 

One important practical aspect of the techniques 

developed is efficiency. Generating lexical and stemming 

matches is very efficient. The probabilistic methods are 

slower, but not unreasonable. Generating matches 

against our collection of 363,822 candidates using a 

modern single CPU machine takes 0.15 seconds per 

query using the Sparse-Prob method and 3 seconds per 

query using the Dense-Prob method. The Dense-Prob 

method requires, apriori, an index of expanded 

representations for both the candidates and the incoming 

queries. If we are asked to generate Dense-Prob 

matches for a query that is not in our index, then we must 

generate this representation on the fly. However, the 

Sparse-Prob method does not exhibit this behavior and 

can be used to efficiently generate matches for any 

incoming query. Therefore, Sparse-Prob is the best 

choice in terms of speed and coverage. However, if 

speed is not an issue, and high quality results are 

important, then Dense-Prob is the better choice. 

VI.CONCLUSION 

Web tasks such as query/keyword matching and 

search query suggestion rely heavily on the quality of 

similarity measures between short text segments. We 

consider two learning approaches: one directly models 

the similarity between a query and a suggestion (q, si) 

and the other models the preference ordering between 

two suggestions si and sj, with respect to the same query 

q. Finally, we present an experimental comparison 

between existing approaches for measuring similarity 

between short text segments and our enhanced similarity 

measures. The experiments indicate that our methods 

are significantly better than existing methods 

ACKNOWLEDGMENT 

I owe my sincere thanks to my Co-author and guide 

Dr. R.M. Suresh for his valuable mentoring and guidance 

in preparing this paper and helping me with valid 

suggestions and directing me in the correct path. 

REFERENCES 

[1]  Berger, A. and Lafferty, J. Information retrieval as statistical 
translation. In Proceedings of SIGIR ‟99, pages 222-229, 1999. 

18                                                                  International Journal on Information Sciences and Computing   Vol.9  No.2  July 2015



[2]  Cucerzan, S. and Brill, E. Extracting semantically related 
queries by exploiting user session information. Technical 
Report, Microsoft Research, 2005. 

[3]  Deerwester, S., Dumais, S., Landauer, T., Furnas, G. and 
Harshman, R. Indexing by latent semantic analysis. In JASIST, 
41(6), pages 391-407, 1990. 

[4]  Jones, R. Generating query substitutions. In Proceedings of 
WWW 2006, pages 387-396,2006. 

[5]  Krovetz, R. Viewing morphology as an inference process. In 
Proceedings of SIGIR ‟93, pages 191-202, 1993. 

[6]  K.Selvi, R.M.Suresh  “Context Similarity Measure  Using Fuzzy 
Formal Concept Analysis” In Proc. of  The Second Int‟l 
conference On Computer Science and Engineering and 
Information Technology CCSEIT-2012, Pages 416-423,2012. 

[7]  Lavrenko, V. and Croft, W.B. Relevance based language 
models. In Proceedings of SIGIR „01, pages 120-127, 2001. 

[8]. Ling Zhuang, Honghua Dai., 2004, A Maximal Frequent Item Set 
Approach for Web Document Clustering In Proceedings of the 
IEEE Fourth International Conference on Computer and 
Information Technology 

[9] Metzler, D., Bernstein, Y., Croft, W.B., Moffat, A., and Zobel, J. 
Similarity measures for tracking information flow. In Proceedings 
of CIKM „05, pages 517-524, 2005. 

[10]  Murdock, V. and Croft, W.B. A Translation Model for Sentence 
Retrieval. In Proceedings of HLT/EMNLP „05, pages 684-691, 
2005. 

[11]  Porter, M. F. An algorithm for suffix stripping. Program, 14(3), 
pages 130-137, 1980. 

[12]  Rocchio, J. J. Relevance Feedback in Information Retrieval, 
pages 313-323. Prentice-Hall, 1971. 

[13]  Sahami, M. and Heilman, T. A web-based kernel function for 
measuring the similarity of short text snippets. In Proceedings of 
WWW 2006, pages 377-386, 2006. 

[14] Strohman, T., Metzler, D., Turtle, H., Croft, W. B. Indri: A 
language model-based search engine for complex queries. In 
Proceedings of the International Conference on Intelligence 
Analysis, 2005. 

[15]  Zhai, C. and Lafferty, J. A study of smoothing methods for 
language models applied to ad hoc information retrieval. In 
Proceedings of SIGIR „01, pages 334-342, 2001. 

[16]  Zhai, C. and Lafferty, J. Model-based feedback in the language 
modeling approach to information retrieval. In Proceedings of 
CIKM „01, pages 403-410, 2001

. 

. 

International Journal on Information Sciences and Computing   Vol.9  No.2  July 2015                                                                    19


