National Journal on Advances in Building Sciences & Mechanics, Vol. 3 No. 1 April 2012 56

AN EFFICIENT REPRESENTATION OF CHARACTERIZATION OF SUPER STRONGLY
PERFECT GRAPHS IN SOME INTER CONNECTION NETWORKS

Mary Jeya Jothi. R', Amutha. A

"Research Scholar, Department of Mathematics, Sathyabama University, Chennai, India
2Department of Mathematics, Sathyabama University, Chennai, India,
Email: 1jeyajothi31 @gmail.com

Abstract

A Graph G is Super Strongly Perfect Graph if every induced sub graph H of G possesses a minimal dominating set
that meet all the maximal complete sub graphs of H. In this paper we have analyzed the structure of super strongly
perfect graphs in some inter connection networks like Butterfly, Wrapped Butterfly and Benes Networks. We have given
the characterization of Super Strongly Perfect graphs in Butterfly, Wrapped Butterfly and Benes Networks. Also we have
investigated the relationship between diameter, domination and co - domination numbers of Butterfly, Wrapped Butterfly

and Benes Networks.
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I. INTRODUCTION

The field of mathematics plays vital role in
various fields. One of the important areas in
mathematics is graph theory which is used in structural
models. This structural arrangements of various objects
or technologies lead to new inventions and
modifications in the existing environment for
enhancement in those fields. Also Graph theoretical
ideas are highly utilized by computer science
applications. Especially in research areas of computer
science such data mining, image segmentation,
clustering, image capturing, networking etc., Similarly
modeling of network topologies can be done using
graph concepts. In the same way the most important
concept of graph colouring is utilized in resource
allocation, scheduling. This leads to the development
of new algorithms and new theorems that can be used
in tremendous applications (8). Since the emergence
of parallel processing in the 1960s, numerous networks
have been proposed for connecting the processing
nodes in distributed multicomputers, to the extent that
a “sea of interconnection networks” is said to exist (7).
An implication of this terminology is that new networks,
or designers trying to make sense of the wide array of
options available to them, might drown in this sea. It
is for these reasons that classes of networks offering
cost - performance tradeoffs within a wide range are
extremely useful, because membership in the same
class allows the application of theoretical results to
make the task of performance evaluation both tractable
and meaningful.

The fact that Butterfly and Benes Networks are
excellent models for interconnection  networks,
investigated in connection with parallel processing and
distributed computation, is widely acknowledged (4).
Butterfly, Wrapped Butterfly and Benes Networks have
been described in the technical literature and still others
await discovery and these Networks also play an
important role in studies relating the three network
parameters of size, node degree, and diameter.
Collective communication operations frequently occur in
parallel computing, and their performance often
determines the overall running time of an application.
Butterfly Network is a popular interconnection network
used in parallel computing (5). It is also used in peer
- to - peer networks (4). Buttery Network supports
mappings of many signal processing algorithms such
as the fast Fourier transform as well as many basic
structures such as cycles and trees.

Il. BASIC CONCEPTS

In this paper, graphs are finite, simple, that is,
they have no loops or multiple edges and undirected.
Let G be a graph. A clique / Maximal complete sub
graph in G is a set XcV(G) of pair wise adjacent
vertices. A subset D of V—(G) is called a dominating
set if every vertex in V- D is adjacent to at least one
vertex in D. A subset S of V is said to be a minimal
dominating set if S—{u} is not a dominating set for
any ue S. The domination number y(G) of G is the

smallest size of a dominating set of G. The domination
number of its complement G is called the co-domination
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number of G and is denoted by v (G) or simply. V A
shortest u— v path of a connected graph G is often
called a geodesic. The diameter of G is the length of
any longest geodesic and it is denoted by diam (G).

lll. OUR RESULTS IN SUPER STRONGLY
PERFECT GRAPH

The most popular bounded - degree derivative
network of the hypercube is the butterfly network. The
Wrapped Butterfly Network is the butterfly Network with
wrap around connection between some nodes and the
Benes Network consists of back - to - back butterflies.
There exist a number of topological representations that
are used to describe butterfly - like architectures.

In this paper, we have identified a new
topological representation of Butterfly, Wrapped
Butterfly and Benes Networks. We have investigated
the structure of Super Strongly Perfect Graph in
Butterfly, Wrapped Butterfly and Benes Networks. We
have presented the characterization of Super Strongly
Perfect graphs in Butterfly, Wrapped Butterfly and
Benes Networks. Also we have analyzed the
relationship between diameter, domination and co -
domination numbers of Butterfly, Wrapped Butterfly and
Benes Networks.

A. Super strongly perfect graph

A Graph G=(V, E) is Super Strongly Perfect if
every induced sub graph H of G possesses a minimal
dominating set that meet all the maximal complete sub
graphs of H.

Example 1 /

Fig. 1. Super Strongly Perfect Graph

Here, {3, 6} is a minimal dominating set which
meet all maximal cliques of G.

Example 2
| 2 3

5 4

Fig. 2. Non - Super Strongly Perfect Graph

Here, {1, 3} is a minimal dominating set which
does not meet all maximal cliques of G.

IV. CYCLE GRAPH

A Cycle graph or Circular graph is a graph that
consists of a single cycle or in other words some
number of vertices connected in a closed chain and it
is denoted by C,,. The number of vertices in G, equals
the number of edges. The cycle graph with even
number of vertices is called an even cycle and the
cycle graph with odd number of vertices is called an
odd cycle.

A. Theorem (2)

Let G=(V, E) be a graph with number of vertices
n, where n>5. Then G is Super Strongly Perfect if

and only if it does not contain an odd cycle of length
at least 5 as an induced sub graph.

V. BIPARTITE GRAPH

A bipartite graph (or bigraph) is a graph whose
vertices can be divided into two disjoint sets U and
V such that every edge connects a vertex in U to one
in V. That is no two graph vertices within U or V are
adjacent. Hence U and V are independent sets. A
complete bipartite graph is a bipartite graph such that
every pair of graph vertices in the two sets are
adjacent.

Example 3

Fig. 3. Bipartite graph

Here, { vy, o, v5} is @ minimal dominating set
which meet all maximal cliques of G.

A. Theorem (2)
Every bipartite graph is Super Strongly Perfect.

B. Theorem (2)

Let G be graph with maximal complete sub graph
Ko. Then G is bipartite if and only if it is Super Strongly
Perfect.
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C. Theorem (2)

Let G be a complete bipartite graph which is
Super Strongly Perfect, then y(G)=2 if and only if
Y(G=2

D. Theorem (2)

Let G be a complete bipartite graph which is
Super Strongly Perfect, then diam (G)=2 if and only
if diam (G) is not defined.

E. Theorem (2)

Let G be a bipartite graph with no isolated vertex
which is Super_ Strongly Perfect, then diam (G) >3 if
and only if y(G)=2.

VI. BUTTERFLY NETWORK

Many interconnection networks have been
proposed as suitable topologies for parallel computers.
Among them, Butterfly networks have received
particular attention, due to their interesting structure.
First, we have to warn the reader that under the name
Butterfly and with the same notation, different networks
are described in the literature. Indeed, while some
authors consider the Butterfly networks to be multistage
networks used to route permutations, others consider
them to be point - to -point networks. In what follows,
we will use the term Butterfly for the multistage version
and we will use Leighton’s terminology (5), namely
wrapped Butterfly, for the point - to - point version.
Furthermore, these networks can be considered either
as undirected or directed. We represent networks as
undirected graphs whose nodes represent processors
and whose edges represent interprocessor
communication links.

The set V of nodes of an r— dimensional
Butterfly correspond to pairs [w,], where i is the
dimension or level of a node (0</<n and w is an
r-bit binary number that denotes the row of the node.
Two nodes w,i> and <w,7> are linked by an
edge if and only if /=/+1 and either

1. wand w are identical, or

2. wand w differ in precisely the M bit,

The edges in the network are undirected. An
r-dimensional butterfly is denoted by BF (. The

r-dimensional butterfly has (r+1)2" nodes and 2"
edges (1). Every Butterfly network is Bipartite.

Example 4
1 2 3
4 6
7 8 9
10 11 12

Fig. 4. A 2 - dimensional Butterfly Network

A. Theorem
Every Butterfly Network is Super Strongly Perfect.

Proof:
Let G be a Butterfly Network.

= G does not contain an odd cycle as an
induced sub graph.

Now, by the theorem 4.1, G is Super Strongly
Perfect.

Hence every Butterfly Network is Super Strongly
Perfect.

B.  Theorem

Let G be a 1 - dimensional Butterfly Network
which is Super Strongly Perfect, then y(G) =2 if and
only if y(G)=2.

Proof:

Let G be a 1 - dimensional Butterfly Network
which is Super Strongly Perfect

Since G is a complete bipartite graph, this
theorem is proved by the theorem 5.3.

C. Proposition

Let G be an r-dimensional Butterfly Network,
r=2, which is Super Strongly Perfect, then (G) 23 if
and only if y(G)=2.

D. Observation

Let G be an r - dimensional Butterfly Network
which is  Super  Strongly  Perfect,  then

Y@ =L (r+12L 2"
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E. Theorem

Let G be a 1 - dimensional Butterfly Network
which is Super Strongly Perfect, then diam (G)=2 if
and only if diam (G) is not defined.

Proof:

Let G be a 1 - dimensional Butterfly Network
which is Super Strongly Perfect

Since G is a complete bipartite graph, this
theorem is proved by the theorem 5.4.

F. Proposition

Let G be an r - dimensional Butterfly Network,
rz2, which is Super Strongly Perfect, then diam
(G)=3 if and only if diam (G) < 3.

G. Theorem

Let G be an r - dimensional Butterfly Network,
r>2, which is Super §trongly Perfect, then diam
(G)=3 if and only if y(G)=2.

Proof:65

Let G be a Butterfly Network which is Super
Strongly Perfect.

Since G is a bipartite graph, this theorem is
proved by the theorem 5.5.

VI. WRAPPED BUTTERFLY NETWORK

Improving the communication characteristics of a
parallel machine is a challenging problem because of
the many conflicting demands on the interconnection
networks. The wrapped butterfly network represents a
good trade - off between the cost and the performance
of a parallel machine. It has a large number of
processors, fixed node degree, symmetry, and ability
to support a variety of parallel algorithms (6). In BF
(n when the nodes of level 0 are merged with those
in level r a new structure called the wrapped butterfly
is obtained (5). The r-dimensional wrapped butterfly has
r+1

2" nodes, each of degree 4 and 2 edges. We
consider the class of wrapped butterflies WB (r), where
r is a positive integer. Having this easily described
interconnection, WB () is found to be vertex symmetric
and possess many other interesting structure
properties. In fact, WB (r) has received much attention
as a good model in network design and it is universal

in the sense that it can efficiently simulate an arbitrary
bounded - degree network (6).

Example 5

000 001 010 011 100 101 110 111

i:3 r

Fig. 5. A 3 - dimensional Wrapped Butterfly Network

A. Theorem

Let G be an r-dimensional Wrapped Butterfly
Network, where r>2. If r is even, then G is Super
Strongly Perfect.

Proof:

Let G be an r-dimensional Wrapped Butterfly
Network, where r=2, and r is even.

= (G does not contain an odd cycle as an
induced sub graph.

Now, by the theorem 4.1, G is Super Strongly
Perfect.

Hence every r-dimensional Wrapped Butterfly
Network, where r>2 and r is even, is Super Strongly
Perfect.

B.  Theorem

Let G be an r-dimensional Wrapped Butterfly
Network, where r=23, then G is Super Strongly Perfect.

Proof:

Let G be an r-dimensional Wrapped Butterfly
Network, where r=3.

= G does not contain an odd cycle as an
induced sub graph.

Now, by the theorem 4.1, G is Super Strongly
Perfect.
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Hence every r-dimensional Wrapped Butterfly
Network, where r=3, is Super Strongly Perfect.

C. Theorem

Let G be an r-dimensional Wrapped Butterfly
Network, where r> 3. If ris odd, then G is Non - Super
Strongly Perfect.

Proof:

Let G be an r-dimensional Wrapped Butterfly
Network, where r>3, and ris odd.

= @ contains an odd cycle as an induced sub
graph.

Now, by the theorem 4.1, G is Non - Super
Strongly Perfect.

Hence every r - dimensional Wrapped Butterfly
Network, where r>3 and r is odd, is Non - Super
Strongly Perfect.

D. Theorem

Let G be a 1 - dimensional Wrapped Butterfly
Network which is Super Strongly Perfect, then
v(G)=2 if and only if y(G)=2.

Proof:

Let G be a 1 - dimensional Wrapped Butterfly
Network which is Super Strongly Perfect.

Since G is a complete bipartite graph, this
theorem is proved by the theorem 5.3.

E. Proposition

Let G be an r - dimensional Wrapped Butterfly
Network, r>2 and ris even, which is Super Strongly
Perfect, then y(G) >3 if and only if y(G)=2.

F. Observation

Let G be an r - dimensional Wrapped Butterfly
Network, r>2 and ris even, which is Super Strongly

Perfect, then v (G) = [ Er } 2

G. Theorem

Let G be a 1 - dimensional Wrapped Butterfly
Network which is Super Strongly Perfect, then diam
(G)=2 if and only if diam (G) is not defined.

Proof:

Let G be a 1 - dimensional Wrapped Butterfly
Network which is Super Strongly Perfect.

Since G is a complete bipartite graph, this
theorem is proved by the theorem 5.4.

H. Proposition

Let G be an r - dimensional Wrapped Butterfly
Network, r>2 and ris even, which is Super Strongly
Perfect, then diam (G)>3 if and only if diam
(G <3.

| Theorem

Let G be an r - dimensional Wrapped Butterfly
Network, r=2 and r is even, which is Supei Strongly
Perfect, then diam (G) >3 if and only if y(G) =2.

Proof:

Let G be an r - dimensional Wrapped Butterfly
Network, r>2 and ris even, which is Super Strongly
Perfect.

Since G is a bipartite graph, this theorem is
proved by the theorem 5.5.

Vill. BENES NETWORK

An r - dimensional Benes network has 2r+1
levels, each level with 2r nodes. The level zero to level
r vertices in the network forms an r - dimensional
butterfly. The middle level of the Benes network is
shared by these butterflies. As butterfly is known for
FFT, Benes is known for permutation routing (normal
network). An r - dimensional Benes network is denoted
by B(n. Even though the Benes network consists of
back - to - back butterflies, there is a subtle structural
difference between Benes and butterfly. The removal
of level 0 nodes of BF () leaves two disjoint copies of
BF(r—1). In the same way, the removal of level r
nodes of BF(n leaves two disjoint copies of
BF (r—1). This recursive structure can be viewed in
another way. The removal of level 0 nodes and level
r nodes (nodes of degree 2) of BF (r) leaves 4 disjoint
copies of a BF (r—2). However the removal of level 0
nodes and level 2r nodes (nodes of degree 2) of
B(r) leaves 2 disjoint copies of a B(r—1). In other
words, the butterfly has dual symmetry in which the
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Benes does not have the dual symmetry property (1).
Every Benes network is Bipartite.

Example 6

Fig. 6. A 2 - dimensional Benes Network

A. Theorem
Every Benes Network is Super Strongly Perfect.

Proof:
Let G be a Benes Network.

Z G does not contain an odd cycle as an induced
sub graph.

Now, by the theorem 4.1, G is Super Strongly
Perfect.

Hence every Benes Network is Super Strongly
Perfect.

B. Theorem

Let G be a 1 - dimensional Benes Network which
is Super Strongly Perfect, then y(G) =2 if and only if
Y(G) =2

Proof:

Let G be a 1 - dimensional Benes Network which
is Super Strongly Perfect

Since G is a complete bipartite graph, this
theorem is proved by the theorem 5.3.

C. Proposition

Let G be an r - dimensional Benes Network,
r=2, which is S_uper Strongly Perfect, then y(G)>3
if and only if y(G)=2.

D. Observation

Let G be an r -
which is  Super

Y(G) =L@r+ 122"

dimensional Benes Network
Strongly ~ Perfect,  then

E. Theorem

Let G be a 1 - dimensional Benes Network which
is Super Strongly Perfect, then diam (G) =2 if and only
if diam (G) is not defined.

Proof:

Let G be a 1 - dimensional Benes Network which
is Super Strongly Perfect.

Since G is a complete bipartite graph, this
theorem is proved by the theorem 5.4.

F.  Proposition

Let G be an r - dimensional Benes Network,
r=2, which is Super Strongly Perfect, then diam
(G) =3 if and only if diam (G) <3.

G. Theorem

Let G be an r - dimensional Benes Network,
r>2, which is Super §trongly Perfect, then diam
(G)=3 if and only if y(G)=2.

Proof:

Let G be a Benes Network which is Super
Strongly Perfect

Since G is a bipartite graph, this theorem is
proved by the theorem 5.5.

IX. CONCLUSION

We have given the characterization of Super
Strongly Perfect graphs. We have analyzed the
structure of Super Strongly Perfect Graph in Butterfly,
Wrapped Butterfly and Benes Networks. We have
presented the characterization of Super Strongly
Perfect graphs in Butterfly, Wrapped Butterfly and
Benes Networks. Also we have investigated the
relationship between diameter, domination and co -
domination numbers of Butterfly, Wrapped Butterfly and
Benes Networks. This investigation can be applicable
for the remaining well known architectures also.
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