National Journal on Advances in Computing & Management, Vol. 3 No. 1 April 2012 1

AN ANALYSIS ON MARKOV STATIONARY PROPERTIES
USING CIRCULATION THEORY

Padma G.!, Vijayalakshmi C.2

De1partment of Mathematics, Sathyabama University, Chennai
Email: "govindanpadma1970@gmail.com, 2vijusesha2002@yahoo.co.in

ABSTRACT

This paper analyses the properties of the continuous Time Markov Chains using circulation theory. Applying the Hill's
circulation theory on Markov chains, the Steady state probabilities of the Markov chains are calculated. The dynamics
of ecological systems can be conveniently described as a Markovian stochastic process. Entropy production can
successfully characterize ecological systems with cyclic competition. Ecological systems display a wide variety of nonlinear
and non equilibrium behavior. Random interactions between individuals and the finiteness of the population lead to intrinsic
stochasticity. Nonequilibrium results when interactions between individuals of different species include cyclic dependencies.
This paper analyzes the Entropy production in terms of Markovian Steady State Probabilities.
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I. INTRODUCTION

The  continuous-time  discrete-state  master
equation with Q matrix is well established as a cogent
model for reactions on the mesoscopic level [19]. A
Q@ matrix has all nondiagonal elements gjj> 0 [26]
and summation of each row being 0. It can be
classified either as reversible or irreversible [6]
corresponding to the physical system being detail
balanced or under pumping [20, 14]. The respective
long time behaviors are equilibrium and Non
Equilibrium Steady State (NESS) [20]. A reversible Q
matrix has only non positive real eigenvalues [21].
Hence, the time-correlation functions of equilibrium
fluctuations are multi exponential and monotonic. When
a reaction is pumped, the eigenvalues of the
irreversible Q can be complex (but never purely
imaginary [22] known as power spectrum “peaking”
[21]. It has also been shown that a sufficient and
necessary condition for NESS is the existence of
circulation (probabilistic flux)in a system [24, 14], and
the stationarity is maintained via circular balance rather
than detail balance [25]. Circulation leads to positive
entropy production [23]. The cyclic population dynamics
yields a non equilibrium steady state that is
characterized by oscillations, large or small, around the
internal fixed point.

A Markov chain is used to define the circulation
rate in the sense of trajectories and the expression of
circulation rate is calculated by deriving the remaining
Markov chains. A Markov chain with net circulations

has positive entropy production rate and vice versa.
The trajectories of an Ergodic recurrent Markov chain
complete cycles incessantly. If the stationary Markov
chain is taken as a model of Hill theory on cycle fluxes
then each state of the Markov chain corresponds to a
Mesoscopic state of polymers. The entropy production
in these dissipative systems is the dissipation of free
energy. Given a stationary Markov chain modeling the
combination and transformation of bio chemical
polymers, the stationary distribution is given by
o ks T
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With i in the state space, then under the condition
of detailed balance, F; is just the free energy of the
system. The transition from state i to j results in the
dissipation of free energy F; - F;. But in the reversible
case, this kind of transitions can result in the emission
of energy which may correspond to the phenomenon
of biological fluorescence.

Also the entropy production rate of the stationary
Markov chain {&} can be expressed in terms of the
circulation distribution { woee C,} as

1 We
=5 L (We—Wp) IogW

2CEC e

oo



2 National Journal on Advances in Computing & Management, Vol. 3 No. 1 April 2012

where C., is the collection of directed cycles occurring

along almost all the sample paths and C. denotes the
reversed cycle of c.

ie, e _1 X (mP; nP)Iog—niPij
o p T (/A
2, e m; P

Also m; Pj—m;Pj= X (Wg— € Jp(i,)) is called the
Ce C,

circulation decomposition of the Markov chain and is

in general not unique. Hence a Markov chain & is

reversible if the components w,, ec C, of the

circulation distribution of & satisfy the condition

We=w, , ¥ ee C,

Le., The detailed balance is m; P; Pi¥ [ je S.
Hence for a continuous time Markov chain if its entropy

vanishes then it is reversible.

Let E={&n}ne Z is a stationary, irreducible
and positive recurrent Markov chain with denumerable
state space S with a transiton probability
P=(Pp;je s and a unique invariant distribution

n=(m);e g then the entropy production rate is defined
as

e,= lm HP(IFR, Pl Fy)

n— oo

where Fj=c (£, 0<k<n) and H(PIF, P IF)) is
the relative entropy of P with respect to P~ restricted
to the o field Fg, where P and P are the distributions
of the Markov chains and its time reversal respectively.

1.1 ENTROPY PRODUCTION IN MARKOV CHAINS

The study of complex systems with a large
number of interacting particles requests global
observables that charactetize their behavior. Modern
statistical mechanics has successfully identified,
interpreted and applied such observables for equilibrium
systems. One of these Observable is the entropy which
allows for predictions of a system’s behavior through
the second law of thermodynamics (an isolated
system’s entropy cannot decrease). Entropy serves as
a central observable in equilibrium thermodynamics.
However, many biological and ecological systems

operate far from thermal equilibrium. Entropy production
can characterize the behavior of such non equilibrium
systems. Hence entropy production for a population
model that displays non equilibrium behavior resulting
from cyclic competition. At a critical point the dynamics
exhibits a transition from large, limit-cycle like
oscillations to small, erratic oscillations identifying
similar principles for non-equilibrium systems, however,
proves elusive. Neither a characteristic global
observable nor a universal principle has been identified
in a general way, While in non equilibrium the entropy
production has been proposed as a useful observable
[1] and different principles governing its behavior have
been suggested [3] problems arise from different
employed definitions of entropy and approaches to non
equilibrium dynamics [2]. Random interactions between
individuals and the finiteness of the population lead to
intrinsic stochasticity.

Il. DESIGN OF THE MARKOV MODEL

In this paper, we study a class of Continuous
Time Markov chains (CTMCs) that typically emerge in
the stochastic simulations with the Gillespie algorithm
[4]. These models are dynamical systems where the
states are populations of agents of various species, and
the state transitions are updates to subpopulations of
the state. For example, in a model of classical chemical
kinetics, there are finitely many chemical species, and
the states are finite multisets of species. Transitions
are described by a finite set of reactions of the form

mRy +...+ m R, Py nPy +...4+ nP, (2
where the reactants are Ry,....,R and the products are
P4,......,P, where each m; is the number of instances
of reactant R; consumed by the reaction, and each n;
is the number of instances of product P; produced by
the reaction. For a particular choice of my reactants of
species Ry, m, reactants of type R,, and so on, the
probability that they react according to (2) in an
infinitesimal time interval dt is p dt and p is sometimes
called the stochastic rate constant. Mass-action kinetics
is based on the assumption that the likelihood of
reaction (2) occurring during a small time interval dt is
p dt multiplied by the number of ways of choosing the
reactants. There are two main ways of modeling
systems governed by mass-action kinetics. The more
traditional method uses ordinary differential equations
to approximate the changes in population sizes. While
this approach has the benefits mentioned above, it
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ignores the fundamental discrete and stochastic nature
of the reactions, and this can be important, especially
for smaller population sizes that are frequently seen in
biological systems.

Each simulation is a trajectory of a CTMC, which
is a sequence of computations of the underlying
transition system. The CTMC trajectory imposes a total
order on the transitions of the simulation trajectory that
is emphasized by the unique time stamps of the
individual transition instances. In this respect, a
simulation on a model can be seen as reduction of a
complex structure, i.e., the model, into a simpler
structure, i.e., the simulation trajectory. However, during
this reduction some of the information on the model is
lost, and some is made implicit. The idea here is to
recover this implicit information, when these transitions
are inspected from the point of view of their
dependencies on one another, it is possible to relax
the total order of the transitions into a partial order
structure. We can then use this partial order as a
representation of causal dependencies in the simulation
and process it to observe the flux in the system with
respect to the flow of the resource.

For a reaction occurring in an isothermal and
isobaric system the chemical driving force A G the
Gibbs free energy difference which characterizes how
far a chemical reaction is away from equilibrium. If we
take a simple bimolecular reaction in a dilute solution
A+B< C+ D as an example, then A G is related to
the concentrations of the reactants and products, as
well as the equilibrium constant K, through the

well-known thermodynamic equation
AG=— RATin (Al [B] Keg[CI [D]) 2)
If we further assume that the law of mass action

governs the reaction’s kinetics, then the forward and
reverse reaction fluxes and equilibrium constant are

J' =k, 1 [A1BL I =K {[CI[D] then Koq=k., 1/K_

(3)

where k,q and K4 are constants that do not depend
on the concentrations. Combining Equations (2) and (3)
yields

A G==RTIn(J/)) (4)

Expressing A G in terms of Equation (4) has
many advantages as it is apparent that if A G=0, then

J"=J". This equilibrium relationship is required by the
principle of detailed balance, which states that at
equilibrium the forward and reverse fluxes are equal
for all existing independent mechanisms for the reaction
A & B. Furthermore, Equation (4) can be generalized
to many other situations. For example, for reversible
enzyme reactions governed by Michaelis-Menten

kinetics, although both J* and J~ are complex,
nonlinear functions of reactant and substrate
concentrations, Equation (4) still holds true.

Another nontrivial example of Equation (4) that
arises in cycle kinetics in unimolecular systems is due
to T.L. Hill. As in the example above, the law of mass
action is assumed in all of Hil’s work. The novelty of
this note is to show a wide range of validity of Equation
(4) based solely on conservation of mass, without
invoking any assumptions of rate laws such as
Equation (3). Hence, Equation (4) is in fact a
fundamental relation for any chemical process operating
in steady, open-system state.The relation is also
intimately related to the fluctuation theorem. However,
the most significant insight from the present work is
that the relation between one-way-fluxes and G can be
established without any supposition on the dynamics of
a system. For the case of a catalytic cycle with

J'/J~ equal to the ratio of the forward-to-reverse cycle
flux and A G equal to the thermodynamic driving force
for the cycle, Equation (4) is identical to the relationship
introduced by Hill and proved by Kohler and
Volimerhaus [21] and by Qian et al. [1] for cycles in
Markov systems. Therefore the relationship between
J+/J— and A G introduced by Hill for linear cycle
kinetics is a special case of Equation (4).

The Markov chain & generates an infinite
sequence of cycles where the cycles are the circuits
represented as C. The weight w,, is the mean number
of occurrences of the cycle ¢ along almost all the
sample paths of &. [8] provided a survey of all principle
trends to cycle representation theory of Markov
processes which is devoted to the study of inter
connections between edge co-ordinates and the
cycle-coordinates along with the corresponding
implications for the study of stochastic properties of the
processes. Also [1] developed the cycle representations
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in terms of the entropy production, detailed balance etc.
If the diagram method is translated into the language
of Markov chain, the Hill's cycle weights. The detailed
balance corresponds to the reversibility of the Markov
chain &.

The probabilistic cycle representation expresses
the relations between the edge coordinates
m;, Pj i, je S and the cycle coordinates we, e€ C, in
the sample-path-behavioral approach.

The finite or the denumerable Markov chains can
be generated by the weighted circuits also. Consider a
finite collection C of overlapping circuits in the state
space S. Suppose that all points of S can be reached
from one another following path of circuit edges. By
associating the number wg with each ee C define

w(i, )= Z wedg(ip¥ i je S

e C

and

wi= X Wedpo(DV ie S

e C

Then define detailed balance for the Markov
chain & as

TE,PU=TEJPJI'V' l,jE S.

Also (5)

then (5) is called the probabilistic (circuit) cycle
representation of and is also called as a circuit chain.
Periodic motion in a stochastic (noisy) system is

nx—=>X,p (6)
(X=X =ep[-pAd]

with A G as the Gibbs free energy. The concentrations
of the various reactants (or, the equilibrium chemical
potentials) are then obtained by differentiating G with
respect to the x. Stationary non equilibrium is installed
when the environment maintains a different chemical
potential; the concentration of ATP can be much larger
than its equilibrium value. For a particle exchange
between the motor and the environment the transition
rates will pick up a dependence on, the ATP
concentration. It is proved that the non equilibrium
transition rates are obtained by associating with each
state /an energy G; and we assume the transition rates

r(i, )y and r(j, /) between two such states / and j to
satisfy

TGD _ i i B(GI-G) (7)
r(j,/)_q)(/’j)e

where is the inverse  temperature  and
D F> )=1/ (i) will break the detailed balance
condition as a consequence of the driving mechanism
via the gradient in chemical potential, possibly
counteracted by some external load. The above
equation can be solved by the choice with W the

chemical potential

P (8)

r, = Ui

146

of some substance o involved in the transition from
state i to state j The difference in energy is in the
exponential £, ;— Uj with U= G;— G the free energy
difference between state / and state j without load.
F;L,j:?ﬁ is the product of an external load acting

from state j to state / over “distance” 77/:77 Since in
the motility cycle the whole configuration has shifted
over the stepping distance (8 nm) we demand that

L e Mj=A and is further parameterized by
wj=w; We call w; the characteristic frequency of
transition (j, j). It can possibly be seen as a measure
of the friction of the transition and may still depend on
the applied load F due to some conformational change
inside the kinesin head. By the symmetry i< it

cannot have a definite influence on the non equilibrium
features of the motion. Comparing (8) with (7) we have

O ()= g PIFLT-wivni 9)

and (8) solves (6) in equilibrium.

lll. ENTROPY PRODUCTION IN KINESIN

The probability to find the system in state / at
time ¢ satisfy the Master equation

dp;(i - '
poll‘t>: 3 [r(]’/)p(j)—f(l,])pf(l)]

je Q

when p;() =p (/) is no longer varying with time the
processes is Stationary. The model describes a non
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equilibrium steady state when (9) vanishes without
each term in the sum being zero. We can associate a
mean entropy production rate (MEP) to it [11] as

MEP= = p(briijlog il (1)

ij rG,

MEP is always non-negative and it is zero if and
only if p()r(i)=p () r( i which is the detailed
balance. The “current’ Jj(#, i) over a time-interval
[t;, &] between any two different states / and j is the
random variable

Jj(t, ) = Ny (ty, &) — Nj (ty, b) (12)

with Nij (4, &) the number of transitions in (t, ) from

state / to state . When sampled over a large
time-interval, we get its mean, the stationary current

Ji=p (D) ri,p)—p Q) (13)

and another way to write the entropy production rate
is

_1 (14)
MEP=7 ,2, JiA;

with A,-j: log (r (i, )/r (j, i) the thermodynamic force by

which the system is driven away from equilibrium. Most
interesting are the currents associated with the power
stroke, from which the velocity and the possible
dependence on load and the ATP concentration are
obtained. In the same manner, since motor functioning
can hardly be imagined without a cyclic component, we
are concerned with Markov chains that are at least
partially cyclic. We call a Markov chain as monocyclic
if we can write Q={1,2,...,n}and r(i, j)=0 unless
i=j+1 (with the convention that n+1=1). For a
monocyclic Markov chain the currents satisfy
Jj=J—Jjwhen j=i+1 and are zero otherwise. Using

(4) in (10), it is easy to verify that the mean entropy
production rate takes the explicit form

MEP=JB[An— FA] (15)
n

where  Ap= X [W;;1=W;]  and
i=1

n
A= X ;41 We have taken the positive direction

i=1

5

of the current opposite to that of the load. It is therefore
natural to say that the stall force Fgy, , the load at
which the mean entropy production vanishes, satisfies

A
Faall ZTH (16). While this monocyclic (sometimes

also called linear) architecture most conveniently
expresses the motion of a motor, in reality, various rate
limiting steps can break the exact order of steps.
Nevertheless formulae (9) and(10) remain valid if the
transition rates satisfy a local detailed balance equation
as in (7) with no bias or driving over internal loops
except over the main motility cycle where the current
is J. [27] For the case of a catalytic cycle with J*/J°
equal to the ratio of the forward-to-reverse cycle flux
and A G equal to the thermodynamic driving force for
the cycle, Equation

A G=- RTInJ"/J is identical to the relationship
introduced by Hill [13].

IV. CYCLES AND FLUXES

In the steady state of the model, the rate at which
the transition /—> j occurs is w;p;, and the net transition
flux along each transition is J;; = w;p; - w;ip; = -J;. From
the master equation for the steady state, the equations
for the ftransiion fluxes into each state
pi(h=0=% (W;p(h)= X AJj The

J#I J#I
transition fluxes are in general not independent, but can
be expressed in terms of cycle fluxes, probability
currents flowing around the closed loops in the kinetic
diagram. The cycles fluxes, Jc, are functions of the
rate constants, and take the general form [16].

Z c
Jo=C,~TC)—=Joy ~Jo-.

Jor =TCy —

Here X ., and X  are complicated

polynomials in the transition rates, C is the cycle index,
and C is the product of rate constants around the cycle
in the positive or negative direction. The directed cycle
fluxes Jg, are interpreted as forward and backward

components of the net cycle flux. To complete the
decomposition, two more steps are needed. First, the
transition fluxes can be expressed in terms of the cycle
fluxes [16]
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AJj= X ¢&jj, C(Jo+—-Jp) where, &j, C==1

celf
takes care of the sign, depending on in which direction
the cycle C passes through the transition j. Secondly,
it is necessary to show that the directed cycle fluxes
Jo+ really correspond to actual fluxes, i.e., describe

the average frequencies of forward and backward cycle
completions. The direction of each cycle flux depends
on the dissipated free energy associated with the cycle.
JOo+ _TIC+ _ —aac+s
JC- TIC- '
understood that the steady state as a competition
between the different cycle fluxes in the kinetic
diagram. The relative magnitudes of the forward and
backward component of the cycle flux are given by the
dissipated free energy associated with that cycle.
However, the relative magnitudes of fluxes around
different loops depend in a non-trivial way on the
individual rate constants. The mean steady-state
one-way cycle fluxes, calculated from the diagram
method are correct as long-time averages but, in
general, are not valid as cycle rate constants at the
detailed cycle-by-cycle level. The main ingredients of
this more detailed examination of one-way cycle fluxes
is based on the beginning state v for each cycle, I

Hence, it is

and ¥ and F,. The self-consistency relations with the

. . -
more conventional long-time averages J, and f are
easily seen to be

ZF 04 FR4FyB
Jp=(F; ﬁ_/)f)_>Jm +(Fy Wf)_)tfzn +(F3 f?/f)_USn

p11

//\\
G-

P22

Fig. 1. Discrete-time diagram used to find the
fraction of cycles F that begin from each state v.

The cycle fluxes are subdivided into one-way
cycle fluxes. These in turn are subdivided further
according to their origin. (Based on the value of ).The
state probabilities and the fluxes are easily calculated
based on these cycles.

In addition to application to chemical reactions,
Equation (4) is directly applied to transport processes.

For example, one-dimensional transport of
particles in a complex medium is governed by a
Fokker-

Planck equation with spatially dependent diffusion
coefficient D (x) and potential function u(x)

dexy_9d (D du_pdc
5t —ox| AT ax+Dax] over the

domain 0 < x<1.

V. CONCLUSIONS

A living environment provides a continuous
chemical energy input that sustains the reaction system
in a nonequilibrium steady state with concentration
fluctuations. Deterministic, nonlinear mathematical
models usually based on the law of mass action have
been traditionally used for modelling biological systems
while nowadays stochastic fluctuations observed in
most living organisms. Energy may play an important
role in biological information processing and
biochemical signal transduction.In biochemical reactions
involved in signaling, high-grade chemical energy is
reduced to low-grade heat. The energy involved in
processing information must be explained in terms of
entropy  production,the central concept in  non
equilibrium steady-state (NESS) thermodynamics .This
paper analyses this non equilibrium steady states of a
Continuous Time Markov Chain in terms of cyclic
fluxes.
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