National Journal on Advances in Computing & Management, Vol. 3 No. 1 April 2012 22

QUERYING IN RECENT BIASED DATA USING ADAPTIVE STREAM PROCESSING

Muruga Radha Devi D.', Thambidurai P.2,

'Research Scholar, Sathyabama University, Chennai, India
2Department of CSE, PKIET, Karaikal, India
Email: 'emrdevi@hotmail.com

ABSTRACT

Recently a new class of data-intensive application has become widely used in which the data is modeled not as persistent
relations but as dafa streams. Examples of such applications include financial applications, network monitoring, security,
telecommunications data management, web applications, manufacturing, sensor networks, and others. As a consequence,
there has been a dramatically increasing amount of interest in querying and mining such data which in turn resulted in
a large amount of work introducing new methodologies for indexing, classification and approximation of time series.
Research in this field has focused on the development of effective transformation techniques, the application of
dimensionality reduction methods and the design of efficient indexing schemes. Traditional access methods that
continuously update data are considered inappropriate, due to significant update costs. The proposed method called as
adaptive stream processing is based on an incremental computation of Discrete wavelet transform which is used as a
feature extraction method and efficient technique for similarity query processing using sliding windows In order to prove
the efficiency of the proposed method, experiments have been performed for range query and k-nearest neighbor query
on real-life data sets. The results have shown that the adaptive stream processing method exhibit consistently better
performance in comparison to previously proposed approaches.

Key words: Similarity query processing, data streams, sliding window, feature extraction, adaptive stream processing.

I. INTRODUCTION

A time series is a sequence of real numbers each
number representing a value at a time point. In fact,
any measurement that changes over time can be
represented as a time series. For example the
sequence could represent stock or commodity prices,
sales exchange rates, weather data and bio-medical
measurements. If there is a need for continuous stock
monitoring as time progresses, then streaming time
series are more appropriate. Streaming time series is
a special case of streaming data, which nowadays are
considered very important and there is an increasing
research interest in the area. Traditional database
methods cannot be applied directly to data streams.
Therefore, new techniques and algorithms are required
in order to guarantee efficient and effective query
processing in terms of the CPU time and the number
of disk accesses. The most important difficulty that
these techniques must address is the continuous
change, which poses serious restrictions. Two key
aspects for achieving efficiency and effectiveness when
managing time series data are representation methods
and similarity measures.

A streaming time-series S is a sequence of real
values s1; s2; ..., where new values are continuously

appended as time progresses. Formally a streaming
time series S consists of a set of (tuple, timestamp)
pairs. The ordering that tuples become available is
induced by the timestamps. For example, a
temperature sensor which monitors the environmental
temperature every five minutes, produces a streaming
time-series of temperature values. As another example,
consider a car equipped with a Global Positioning
System (GPS) device and a communication module,
which transmits its position to a server every ten
minutes. A streaming time series of two-dimensional
points (the x and y coordinates of its position) is
produced. Note that, in a streaming time-series data
values are ordered with respect to the arrival time. New
values are appended at the end of the series. If the
sampling rate of the two time series are the same, one
can omit the timestamps and consider them as
sequences of d-dimensional points. Such a sequence
is called the raw representation of time series.

The length of a streaming time series can be very
large, since new values are continuously appended.
Therefore, the similarity of two time series is expressed
by means of the last values of each stream (e.g., 128,
256, 1024 values), using a sliding window approach.
Each stream can be represented as a vector in a
high-dimensional space. So it is desirable to develop

Muruga Radha Devi :

representation techniques that can reduce the
dimensionality of time series while still preserving the
fundamental characteristics of a particular dataset.
Dimensionality reduction techniques (e.g., Discrete
Fourier Transform, Discrete wavelet Transform) can be
used in order to reduce the number of dimensions,
allowing efficient multidimensional access methods to
be utilized. However, each vector changes over time
since new values are continuously appended. The
naive approach is to delete the old feature vector by
updating the access method, to re-apply the
dimensionality reduction technique to the new vector,
and finally, to store the resulting feature vector in the
access method. This process is very costly both in
Central Processing Unit (CPU) time and number of disk
accesses and therefore, it is inappropriate in our case.
Since the dimensionality is changing for stream data,
it will be beneficial to dynamically index such data to
enable the support for efficient query processing. R-tree
[6] based index structures have shown to be useful in
indexing multi-dimensional data sets, but they are not
suitable for indexing data streams since they are
designed for the cases where the dimensionality is
fixed. So we are using an index structure which can
accommodate the changing dimensionality of data
objects.

In this paper, we have used adaptive index
updating techniques for efficient similarity searching on
multiple data streams. This indexing method can be
used both as an index and as a summary for the
database, which can produce accurate answers to
queries in an incremental way. When we are limited to
a bounded amount of memory it is not always possible
to produce exact answers for data stream queries;
however, high-quality approximate answers are often
acceptable instead of exact answers. One technique for
producing an approximate answer to a data stream
query is to evaluate the query not over the entire past
history of the data streams, but rather only over sliding
windows of recent data from the streams. For example,
only data from the last week could be considered in
producing query answers, with data older than one
week being discarded.

Our Contribution:

e We have developed a novel method in order
to process similarity queries in data streams
with sliding windows.

Querying in Recent Biased Data using Adaptive Stream Processing 23

e We then applied an index structure to
support efficient similarity search for multiple
data streams that can accommodate
changing dimensionality of data objects.

e Our method is a generalized one to support
queries on recent biased data also.

e Performance comparison is done between
the proposed method and existing methods
like sequential scan and VA* stream method.

Il. BACKGROUND AND RELATED WORK

In this section, research into various similarity
query processing methods are first reviewed and then
we briefly describe about the traditional dimensionality
reduction methods and Scalar Quantization Technique
for stream processing.

A. Similarity Query processing

Analysis of time-series data is rooted in the ability
to find similar series. Similarity is defined in terms of
a distance metric, most often Euclidean distance or
relatives of Euclidean distance. Two time sequences of
same length are said to be similar if the Euclidean
distance is less or equal to a given threshold.

There are two basic types of similarity queries:

e similarity range query. given a user time
series Q and a distance e, this query
retrieves all time series that are within
distance e from Q.

e similarity nearest-neighbor query. given a
user time series Q and a integer k; this query
retrieves the k series that are closer to Q.

The brute force approach to answering these
queries is sequential scanning which requires
comparing every time series C; to Q;. This approach is
unrealistic for large datasets. Similarity searching
techniques that guarantee no false dismissals are
exact, and techniques that do not have guarantee as
approximate. Approximate techniques can still be very
useful for exploring large databases, when the
probability of false dismissal is low.

A time series C = (¢4, . C,) with n data points
can be considered as a point in n-dimensional space
which suggests that time series could be indexed by
multidimensional index structure such as R-tree[6], so
we need to perform dimensionality reduction in order
to exploit multidimensional index structure to index time

24 National Journal on Advances in Computing & Management, Vol. 3 No. 1 April 2012

series data. In order to guarantee no false dismissals
the distance measure in the index space must satisfy
the following condition

D indexspace (A, B) <= Dyye (A, B) [1]

(i.e.) we can define a distance measurement on
the reduced size representations that is guaranteed to
be less than or equal to the true distance measured
on the raw data. This is known as Contractive Property
or l.ower Bounding property. It is this property that
allows using representations to index the data with a
guarantee of no false dismissals.[4]

The efficient processing of similarity queries
requires the addressing of the following important
issues:

e the definition of a meaningful distance
measure D in order to express the similarity
between two time series objects.

e the efficient representation of time series
data and

e the application of an appropriate indexing
scheme in order to quickly discard database
objects that cannot contribute to the final
answer.

It is evident from the above definitions, that in
order to express similarity between two time series
objects, a distance measure D is required. This
distance measure usually ranges between 0 and 1. If
two time series v and v are similar, then the value D
(b, v) should be close to 1, whereas if they are
dissimilar then D (u, v) should be close to 0. Similarity
search can be applied for whole-match queries and
subsequence-match queries as well, for static or
streaming time series.

Similarity queries in streaming time series have
been studied in [11] where whole-match queries are
investigated by using the Euclidean distance as the
similarity measure. A prediction-based approach is
used for query processing. The distances between the
query and each data stream are calculated using the
predicted values. When the actual values of the query
are available, the upper and lower bound of the
prediction error are calculated and the candidate set is
formed using the predicted distances. Then, false
alarms are discarded.

Several alternative distance functions have been
proposed in order to allow translation, rotation and
scaling invariance[13]. The main shortcoming of the
Euclidean distance is that all time series must have
equal length, which is a significant restriction. If time
series are sampled using different time intervals, then
their length will not be the same, and therefore the
Euclidean distance cannot be applied. In order to
express similarity between time series of different
lengths, other more sophisticated distance measures
have been proposed. One such distance measure is
Time Warping (TW) that allows time series to be
stretched along the time axis. The time warping
distance maps each element of a time series u to one
or more elements of another time series v. B-K,
Jagadish and Faloutsos [7] used time warping as
distance function and present algorithms for retrieving
similar time sequences under this function. Rafiei and
Mendelzon [9] propose a set of linear transformations
such as moving average, time warping and reversing.
These transformations can be used as the basis of
similarity queries for time series data. In addition
Rafiei[10] propose the method of processing queries
that express similarity in terms of multiple
transformations instead of a single one.

Representing each time series as an
m-dimensional vector may result in performance
degradation during query processing, due to high
computation costs of the distance function. It is
preferable to compute the distance as efficiently as
possible, towards increased processing performance.
To attack this problem, dimensionality reduction is
applied to the time series, in order to transform them
to a more manageable representation.

B. Dimensionality Reduction Methods

Agrawal, Faloutsos and swami [1], first proposed
the use of distance preserving transformation for
dimensionality reduction. Popular feature extraction
techniques are DFT (Discrete Fourier Transform) and
DWT (Discrete Wavelet Transform) where the
sequence is projected into the frequency domain (DFT)
or tiing of the time frequency plane (DWT) [3].
Wavelets are often used as a technique to provide a
summary representation of the data. Wavelet
coefficients are projections of the given signal (set of
data values) onto an orthogonal set of basis vector.
Often Haar wavelets are used in databases for their
ease of computation. Wavelet coefficients have the

Muruga Radha Devi :

desirable property that the signal reconstructed from
the top few wavelet coefficients best approximates the
original signal. Note that dimensionality reduction is a
lossy operation, since after the transformation of the
time series some information is lost. This means that
the transformed data is an approximation of the original
data, and the latter must be retained in order to be
available for reference. The original and the
transformed data are used for query processing by
means of the filter-refinement processing technique.

C. Stream processing using Sliding Windows

We define streaming database as a collection of
multiple data streams, each of which arrives
sequentially and describes an underlying signal. For
example, the data feeds from a sensor network form
a streaming database. The dimensionality of each data
stream is always increasing in this case. Hence,
theoretically the amount of data stored, if stored at all,
in a streaming database tends to be infinite. This
leaves us with a challenge of trying to get accurate
query results from a huge database with time
constraints. A set of algorithms for stream processing
works on the recent past of data streams by applying
a sliding window on the data stream [2]. In this way,
only the last W values of each streaming time series
is considered for query processing, whereas older
values are considered obsolete and they are not taken
into account. For example, streams that are non-similar
for a window of length W (left), may be similar if the
window is shifted in the time axis (right). The number
of samples each time series may range from a few to
hundreds or thousands.

D. Scalar Quantization Technique

Scalar quantization technique is a way to
quantize each dimension independently so that a
summary of the database is efficiently captured. It also
serves as an index structure for efficient point, range
and k nearest neighbor queries.

Indexing Based on Vector Approximation

Since conventional partitioning index methods,
e.g. R-trees, grid files and their variants, suffer from
dimensional curse, VA-file was used as an approach
to overcome the curse and supports efficient similarity
search in high-dimensional spaces. The VAfile is
actually a filter-based approach of synopsis files. It
divides the data space into 2" rectangular cells where
b is the total number of bits specified by the user .

Querying in Recent Biased Data using Adaptive Stream Processing 25

Each dimension is allocated a number of bits, which
are used to divide it into equally populated intervals on
that dimension. Each cell has a bit representation of
length b which approximates the data points that fall
into this cell. The VA-file itself is simply an array of
these bit vector approximations based on the
quantization of the original feature vectors. VA™ file |
5] is used to target non-uniform data sets, and can
lead to more efficient searching. Weber et al. [12] have
developed a quantitative analysis and performance
study of similarity search techniques for high
dimensional data sets.

VA-Stream for Indexing Streaming Database

VA-file and VA'{ile are targeted towards
traditional databases, in which the dimensionality of
data objects is fixed. In order to handle dynamic
streaming databases, the approaches should be
customized for streaming databases. We call the
customized approaches as VA-Stream and
VA*-Stream, a way to generate dynamic synopsis or
summarization for streaming databases with dynamic
updates. Since VA-Stream and VA*-Stream are
capable of taking a snapshot of any moment of the
dynamic streaming databases, a preliminary analysis
can be made on the current snapshot so that the data
set can be preprocessed and a better performance for
efficient similarity searching can be achieved. The
algorithm used to build a new VA-file in order to
capture the up-to-date snapshot of the streaming
databases is called VA-Stream [8].

lll. ADAPTIVE STREAM PROCESSING

A streaming time series is a sequence of data
values where new values are continuously appended
as time progresses. Let X3, X0, X4, Xy be a stream
of stock data, where X, means today’s data, X.; means
yesterday's data, and so on. The recent — biased data
stream will take the following form:

...... +d(1 - d)® X+ d(1 - d)? X + d(1 - d) X4 + dXq

We look at continuous or streaming queries with
either a sliding window or an infinite window. For
queries with a fixed-size sliding window, the size of the
synopsis stays the same, and the accuracy of this
synopsis does not suffer from the evolving
dimensionality. The approach for queries with an infinite
window is based on an reasonable assumption that the
data streams are aging. That's actually what happens

26 National Journal on Advances in Computing & Management, Vol. 3 No. 1 April 2012

in real world, where people put more emphasis on
more recent activities. In the context of recent biased
analysis the users are more interested in the current
data than in the past data, and bigger weights will be
assigned to more recent dimensions of the data. The
challenge is to maintain these biased approximations
continuously as new data arrives in an online manner.
So a system which maintains better approximations for
the recent data is useful.

A. Adaptive Stream Processing

A stream is denoted by the symbol S, and a
finite time series by the symbol S [i : j], where i is the
first time instance of the time series and j is the last.
The number of values of a time series is therefore
j—i+1 and corresponds to a window of length W. S(i)
is the i" value of the time series. In our study, the
Euclidean distance between two finite time series is
used as the similarity measure. Let us assume the
existence of n streaming time series, each updated
over time. To determine similar streaming time series,
we use only the last W values of each one and update
these values when a new value becomes available.
Given a query streaming time series the challenge is
to determine similar time series as the data evolve with
time.

The naive approach is the Sequential Scan (SS).
In each update, the distances between the query
streaming time series and each data streaming time
series are computed. Then similar streaming time
series are reported. The streaming environment poses
new challenges to the applications as unbounded
memory requisites, high input rates and fast response
times. Therefore more sophisticated approaches are
necessary to speed up the similarity process. The
similarity measure is applied on the extracted features.
Moreover, an indexing method is used to prune time
series and therefore to avoid distance computations.

Imposing sliding windows on data streams is a
natural method for approximation that has several
attractive properties. If one is trying in real-time to make
sense of network traffic patterns, or phone call or
transaction records, or scientific sensor data, then in
general insights based on the recent past will be more
informative and useful than insights based on stale
data. For example, queries which tracked traffic on the
network backbone, would likely be applied not to all
traffic over all time, but rather to traffic in the recent

past. Moreover, in most cases users would expect fast
response time for queries. This makes it necessary to
develop an effective index structure for streaming
database with very efficient update cost, so that query
results can be obtained in a tolerable amount of time.

The steps involved in the adaptive stream
processing are:

(@) The last W values of each stream are stored in
disk.

(b) The DWT coefficients of each stream are inserted
into the index.

(c) When a value becomes available the window of
the stream is updated, the features of the stream
are extracted incrementally and the new DWT
coefficients replace the old ones.

(d) Then the adaptive update policy decides if the
index needs updation or not.

(e) The query is applied to the index to retrieve
candidates streaming time series.

() Then in a post processing step the actual
distances are computed to discard false alarms.

To satisfy the limitations posed by the streaming
environment, an incremental computation of DWT is
used, and an adaptive update policy is used in order
to avoid the degradation of the system due to the
usage of the index structure and the high number of
updates.

B. Incremental DWT computation

The DWT is used as the feature extraction
method, which preserves the Euclidean distance
between two sequences. There is a trade-off between
the number of the DWT coefficients and the
approximation of the distance in the time domain. If
more DWT coefficients are used then the number of
candidates is reduced during the query processing,
thus the query procedure speeds up. Normally, every
time a new value for a stream arrives, the DWT vector
must be recalculated by using the last W values of the
stream.

Let X be a streaming time series with values
X(0); X(1); . .. ; X(W-1) and length W.

Moreover, let DWTy(X); DWT;(X); DWT,,.1(X)
denote the DWT coefficients of X. If a new value for
this stream arrives, we get the sequence

Muruga Radha Devi :

T(1), T); . . . ; T(W) , where X(i) = T(i)

for 1 <i<W-1 and T(W) is the new value.

C. Aadaptive Update policy

Since the number of streams may be quite large,
the use of an index structure is desirable to avoid the
computation of the distance between the query and all
the time series. If we update the index every time a
new value becomes available, the overhead may be
prohibitive due to additional page accesses. To avoid
continuous deletions and insertions, we use an
ada--ptive update policy. The proposed approach is an
incremental way to update the index to reflect the
changes in the databases, and it can eliminate the
need to rebuild the whole index structure from scratch.
Hence it enables faster query response time.

A parameter A, is used to control the updates.

If the distance between the new and the old DWT
vector exceeds the value of parameter A, then the

index is updated. Otherwise, no update is performed.
This technique leads to considerable savings in CPU
and 1/O time. The last recorded DWT vector is stored
in the last disk page of every streaming time series,
to become available when a new value arrives.

Let X be a streaming time series. The last W
values form a sequence denoted by X1[N - W + 1 :
N] where N is the position of the last value of the time
series. When a new value for Xy is available, a new
sequence X2 [N - W + 2 : N+1] is formed. Assume
further that DWT(X1) is the last recorded DWT
sequence corresponding to, X1 [N - W + 1 : N] and
DWT(X2) is the DWT sequence corresponding to X2
[N - W + 2 : N+1], which is computed incrementally
using the DWT (X1).

If Dg(DWT(X1); DWT(X2)) <A, then DWT(X2)
is stored as the most recent DWT (replaces DWT (X1))
but it is not inserted into the index. Assume that
another value for the same stream arrives. Let X3 [N-
W + 3 : N + 2] be the new time series and DWT (X3)
the DWT of this sequence, which is computed
incrementally using DWT (X2). DWT (X3) replaces
DWT (X2) as the most recent DWT. If Dg (DWT (X3);
DWT(X1)) < A, , no update is performed in the index.

On the other hand, if Dg (DWT(X3); DWT(X1)) > A,

then DWT (X3) replaces DWT (X1) in the index, so an
update is performed.

Querying in Recent Biased Data using Adaptive Stream Processing 27

In summary, we need both the last recorded
DWT vector and the previously calculated DWT vector.
The first is used to decide whether an update will occur
or not, and the second is used for the incremental
computation of the new DWT vector.

D. Query Processing in Data Streams

The overall procedure for similarity queries in
streaming series includes the following steps:

(a) feature extraction is applied on time series,

(b) the extracted features are inserted in an index
structure,

(c) feature extraction is applied on the query time
series,

(d) the index is used to retrieve candidate time series
respecting a user-defined threshold and

(e) the distances between query and candidates time
series are computed in a post processing step to
discard false alarms.

Nearest-neighbor query processing

Assume that we have the DWT vector of the
query stream DWT(S), the MBRg that is formed by
the last recorded DWT vectors and a stream Sy that
belongs to the MBR| g. Moreover, assume that we have
the last recorded DWT vector DWT(S,), g of stream S,
and the current DWT vector DWT (S,) of stream S,.
The k™ nearest neighbor distance is dy.

De (DWT (Sg), DWT (Sy)) < di

De (DWT (Sg), DWT (Sy) + Ay < dg + A,
De (DWT (Sg); DWT (S,) + Dg (DWT (Sy);
DWT (Sy) 1g) < dk + A,

De (DWT (Sg); DWT (Sy) LR) < d¢ + Ay,
(triangular inequality)

MinDist (DWT(Sy); MBRLR) < dy + A,

This implies that if the current DWT vector of a
stream is closer to the query point than the K
neighbor, then the corresponding MBR; g will be
inserted in the index. We can visit the first k streams
and compute their real distances from the query. The
maximum distance can be used for the initialization of
dy, instead of one.

28 National Journal on Advances in Computing & Management, Vol. 3 No. 1 April 2012

Range query processing

In order for similarity range queries to produce
the correct results, the user-defined distance e must
be expanded by a value of A, which is the maximum

A, value seen so far. In this way, we guarantee that

no false dismissals occur. Assume that we have the
DWT vector of the query stream DWT (S;) the MBR g
that is formed by the last recorded DWT vectors and
a stream S, that belongs to the MBR . Moreover,
assume that we have the last recorded DWT vector
DWT (Sy)_Rr of stream S, and the current DWT vector
DWT (S,) of stream S,.

Dg (DWT (Sg), DWT (Sy)) + Ay < e + A,

De (DWT (S); DWT (Sy) + Dg (DWT (S,);
DWT (Syr) < e + Ay

De (DWT (Sg); DWT (S (r) < € + A,

(triangular inequality)

MinDist (DWT (Sg); MBRLg) < € + A,

This implies that if the current DWT vector of a
stream overlaps the query region, then the
corresponding MBR g (@ MBR that is formed by the
last recorded DWT coefficients) will overlap the
extended query region.

IV. EXPERIMENTAL STUDY

An important operation in streaming time series
is to determine similar time series with respect to a
query series. Similarity is expressed by means of the
last w values of the streams. In this paper we have
analyzed similarity range queries and nearest neighbor
queries in such an environment The design of our
experiments aims to show the advantage of the
proposed approach in terms of both query response
time and index building time, total CPU cost and
candidate ratio.

A. Dataset

The techniques proposed in this paper are for
high dimensional streaming data sets, therefore we
chose our real-life data sets to have 360-day stock
price movements of 500 companies, i.e., 500 data
points with dimensionality 360. For e.g., in the case of
Stock data, each dimension corresponds to daily stock
prices of all companies.

We have used VA" stream and sequential
scanning as competitor for our method because of the

infeasibility of the well known techniques for stream
data and the well known dimensionality curse which
makes other choices like R-tree and its variants out of
question for range and nearest neighbor search. It can
be used only in cases where a fraction of the stream
is updated in each time instance. Both range and k-NN
queries are considered. We have studied the
performance of the methods by varying several of the
most important parameters such as query distance e
in range queries, the value k for k-NN queries, the
length of the sliding window, the number of DWT
coefficients etc.,

The default values for the parameters are: the
query distance ‘e’ that has been chosen so that 1% of
the streams to be in the answer. The desirable update
ratio is 0.1%. Thus only .1% of the streams will be
actually updated in each time instance. The sliding
window size is 256. A group of experiments was set
up to evaluate the performance of the approximation
generated by our approach for a snapshot of streaming
databases.

B. Performance of range query and nearest
neighbor queries

In this section we see the experimental results
obtained from range queries where all streams are
updated in each time instance. The performance of the
three methods with respect to query distance ‘e’ is
shown in figure 1. CPU cost of VA" stream is less
than that of adaptive stream processing when number
of queries is low. As e increases, the difference
between the two methods is decreased because the
number of streams that are contained in the final
answer increases rapidly. Sequential scan does not
require any index updates.

120 ~
100 4 A——t—d—d—dk—k—

% 80 - —4—adaptive stream
0

; 60 ~&-VA+ stream

a

U 40 4 —d—sequential scan

20‘.—."".‘.—-‘-.

0

10 20 30 40 50 60 70

Query distance 'e'

Fig. 1. Performance by increasing the query
distance ‘¢’

Muruga Radha Devi :

The number of DWT coefficients has an important
impact on the performance. As the number of
coefficients increases, the distance preservation is
improved and therefore less false alarms are
introduced. The figure 2 shows the hit ratio with respect
to the number of DWT coefficients for the stocks data
set. Thus it is better to use an adequate number of
DWT coefficients sacrificing low CPU cost. Achieving
good hit ratio is important because hit ratio impacts the
query efficiency and thus the overall method.

12 4

1 | a1
8
® 08 -
-}
5 06 —4—adaptive stream
2
5 04 4 —f=sequential scan

] M T Vhvstream

0 o

2 4 6 8 10 12 14 16 18 20
No. of coefficients

Fig. 2. Hit ratio by increasing the no. of DWT
coefficients

Figure 3 shows the performance of the three
methods with respect to k in k-NN query processing.
From the figure it is clear that the three methods are
having similar performance as in range queries.

To show the impact of window size on the
performance of the approaches under test, window
sizes were chosen to be 64, 128, 256, 512 and 1024
for Stock data and experiments were set up to process
k-NN queries for the streaming database at any time
positions after new dimension comes. Figure 4 shows
the impact of varying sliding window size over total
CPU time.

120 -
100 -| ¢—0—0—0—0—0—0—0—0—¢
80 4

60 - —4—sequential scan

Total CPU

40 ——adaptive stream
20

!E ===\ A+ stream
0 .

10 20 30 40 50 60 70 80 90 100

K

Fig. 3. Performance of the three methods with
respect to different values of k

Querying in Recent Biased Data using Adaptive Stream Processing 29

50

40
2
g 30
T 2 ~4—sequential scan
5
F 10 =f=VA+ stream

0 —4—adaptivestream

64 128 256 512 1024
Window size

Fig. 4. Performance of the three methods by varying
window size

Two metrics were used to evaluate how the
generated approximation can support range and k-NN
queries: vector selectivity and page ratio. Vector
selectivity was used to measure how many vectors
have been actually visited in order to find the k nearest
neighbors of the query. Since vectors actually share
pages, the vector selectivity does not exactly reflect the
paging activity and query response during the similarity
search. Hence, page ratio was adopted to measure the
number of pages visited as a percentage of the number
of pages necessary. In contrast, the vector selectivity
is always 100% for sequential scan since it needs to
visit all the vectors in order to find the k nearest
neighbors.

1.2 1
1 <
2 0s -
d 06 1
& —4—sequential scan
04 A
£ 02 == VA+ stream
0 . —&— adaptive stream

60 120 180 240 300 360 420

window size

Fig. 5. (a) Page ratio Vs sliding window
for stock data

The following two types of metrics were also used
here for performance evaluation of k-NN queries:
average index building time and average query
response time. In order to get the average index
building time and the average query response time, for
each different window size we chose, we processed
100-NN queries at each time position after the new
dimension arrived. We recorded the index building time
and the average query response time over 100 queries

30 National Journal on Advances in Computing & Management, Vol. 3 No. 1 April 2012

12

08 -

06 - —4—sequential scan
——-VA+ stream

vectorselectivity

—&— adaptive stream
02 7 =.='=H-._.

50 100 150 200 250 300 350

window size

Fig. 5. (b) Vector selectivity Vs sliding window for
stock data

at each time position and then computed the average
index building time and the average query response
time over 100 queries.

140

£ 120 -

£ 100 -

-]

@ 80

c

2 60

% —4—VA+ stream
S 40 A .

z =fi—adaptive stream
S 20

o

0
64 128 256 512 1024

window size

Fig. 6 (a) Query response time of two methods, for
stock time series data.

index building time (ms)

2.5
2

151 == \/A+ stream
14 —8—adaptive stream

64 128 256 512 1024

Window size

Fig. 6 (b) Compares the index building time of two
methods, for stock time series data.

The index building time does not vary too much
for adaptive stream and VA* Stream technique, since

it is an incremental method and works almost on only
one dimension.

V. CONCLUSION

We have examined similarity range queries and
nearest neighbor queries using adaptive stream
processing method. We have used sequential scanning
and VA" stream methods as the competitor for the
proposed method. We have studied the performance of
the methods by varying several of the most important
parameters such as query distance e in range queries,
the value k for k-NN queries. Our performance
evaluation establishes that the proposed technique can
be used to build the index structure for streaming
database in a much shorter time than available
approaches. When the number of dimensions are large,
our method can work both as an update-efficient index
and as a dynamic summary of stream data. An
advantage of adaptive stream processing is that it can
handle different window sizes. A sliding window of
length w is defined to capture the last w values of each
streaming time series. It is expected that CPU cost for
the proposed method will not be affected significantly,
since the number of coefficients remains fixed. Results
have shown that significant improvement is achieved in
comparison to the existing approaches.

REFERENCES

[1] Agrawal, R. Faloutsos, C & Swami. A. 1993, Efficient
similarity search in sequence databases, Proceedings
of the 4" Conference on Foundations Of Data
organization and Algorithms.

[2] B. Babcock, M. Datar R. Motwani, L. Callaghan,
Maintaining variance and k-medians over data stream
windows, in Proceedings of the symposium on
Principles of Database Systems, 2003, pp 234 — 243.

[3] K.P. Chan and AW. Fu, 1999, Efficient Time Series
Matching by Wavelets, Proc. Int! Conf on Data Eng.
(ICDE 99).

[4] Eamon Keogh, Kaushik.Chakrabti, Michael Pazzani
and Sharad Mehrota, 2001, Dimensionality Reduction
for Fast Similarity Search in Large Time Series
Databases, Knowledge and Information Systems, vol
3, pp 263-286.

[5] H. Ferhatosmanoglu, E. Tuncel, D. Agarwal and El
Abbadi, Vector Approximation based indexing for
non-uniform high dimensional data sets. /n
Proceddings of the 9" ACM Int. Conf. on Information
and Knowledge Management, pages 202-209, McLean,
Virginia, November 2000.

Muruga Radha Devi :

(6]

7]

(8]

(9]

[10]

(1]

A. Guttman, R-Trees: A dynamic index structure for
spatial searching, 1984, In Proceedings of ACM
SIGMOD Int. Conf. Management of Data, Boston, USA,
pp 47-57.

B-K, Yi, H.V. Jagadish and C. Faloutsos, Efficient
Retrieval of similar time sequences under time warping,
in Proc. Int. Conf. Data Engineering, Orlando, Florida,
USA 1998, pp 201-208.

Maria Kontaki, Apostolos N Papadopoulos, Yannis
Manolopoulos, Adaptive Similarity Search in streaing
time series with sliding windows, Data and Knowledge
Engineering , 2007, pp 478 — 502.

D. Rafiei and A.O. Mendelzon, Similarity based queries
for time series data, in Proceedings of ACM SIGMOD
Int. Conf.Management of Data, Arizona, USA 1997, pp
13-25.

D. Rafiei, On Similarity based queries for time series
data, in Proceedings of Int. Conf Data, Engineering,
Sydney, Australia, 1997, pp. 410-417.

Wang and Gao L, Continually evaluation similarity
based pattern queries in a streaming time series, in
Proceedings of the Madison, WI, 2002.

(12]

(13]

Querying in Recent Biased Data using Adaptive Stream Processing 31

R. Weber, H.J. Schek and S. Blott, A quantitative
analysis and performance study for similarity search
methods in high-dimensional spaces, /n Proceedings
of Int. Conf. on very large Data bases, pp 194 — 205,
New York, August 1998

Xiaoyue Wang, Eamonn Keogh, Peter Scheuermann,
Querying and Mining of Time Series Data:
Experimental comparison of Representations and
Distance Measures.
D. Muruga Radha Devi received
Bachelor's degree in Computer
- Science and Engineering from
Bharathidasan University in 1994,
Master's Degree in Computer
Science and Engineering from
L University of Madras in 2001.
Her research interests include

time series analysis, efficient
information retrieval and Data
mining

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

