International Journal on Design & Manufacturing Technologies, Vol. 7 No. 1 January 2013 7

AN ENHANCED GENETIC ALGORITHM FOR ASSEMBLY PLANNING

Dev Anand M.1, Kumanan S.2, Girish RR.3, Selvaraj T.2 and Asokan P.2

"Noorul Islam Centre for Higher Education, Thuckalay, Tamilnadu, India
®National Institute of Technology, Tiruchirappalli - 620 015, Tamilnadu, India
3Rajalakshmi College of Engineering, Tamilnadu, India
E-Mail: anandpmt@yahoo.co.in

Abstract

Assembly planning is very important for competitive manufacturing where assemble-to- order of products is in-practice.
Assembly planning is a complex task and an optimal assembly plan is detrimental to meet customer demands. This work
presents a genetic algorithm for assembly planning. This problem is more difficult than other assembling problems that
have already been tackled with success using these approaches, such as the classic Traveling Salesperson Problem
(TSP) or the Job Shop Scheduling Problem (JSSP). It not only involves arranging of tasks, as in those problems, but
also the selection of them from a set of alternative operations. Random search methods are being attempted for these
types of combinatorial problems. Thus, many current research reports describe efforts to develop more efficient planning
algorithms. Genetic algorithms show particular promise for assembly planning. As a result, several recent research reports
present assembly planners based upon traditional genetic algorithms. Although prior genetic assembly planners find
improved assembly plans with some success, they also tend to converge prematurely at local-optimal solutions. Thus,
we present an assembly planner, based upon an enhanced genetic algorithm that demonstrates improved searching
characteristics over an assembly planner based upon a traditional genetic algorithm. In particular, our planner finds optimal
or near-optimal solutions more reliably and more quickly than an assembly planner that uses a traditional genetic algorithm.
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problem

I. INTRODUCTION

Increasing  competiton has  forced the
manufacturers to seek ways and means of cutting down
the production costs, improving the product quality, and
reducing the manufacturing lead times. Assembly
process is significant in manufacturing and its planning
is a combinatorial problem: The number of assembly
plans is a factorial function of the number of
components in the product. The selection of assembly
plans has a bearing effect on the final product. The
choice of the assembly sequence in which parts or
subassemblies are put together in the mechanical
assembly of a product can drastically affect the
efficiency of the assembly process. Hence an efficient
assembly plan, greatly determines lead-time, production
cost, and, thus, potential product success. The
assembly-planning problem involves the identification,
selection and sequencing of assembly operations stated
with their effects on the parts [1]. The identification of
assembly operations usually leads to the set of all
feasible assembly plans. Besides it also relies on other
factors like how the single parts are interconnected in
the whole assembly, i.e. the structure of the graph of
connections. Two kinds of approaches have been used

for searching the optimal assembly plan. The qualitative
approach uses the rules in order to eliminate assembly
plans that include difficult tasks or awkward
intermediate sub-assemblies. A quantitative approach
uses an evaluation function that computes the merit of
assembly plans. The past research reveals two classes
of algorithm could be grouped as classical and
non-traditional algorithms.

A. Classical algorithm

The need for opportunistic scheduling was first
addressed [2] for robotic assembly dealing with the
partial order representation for assembly plans. At first,
interactive  planners  queried the user for
geometric-reasoning information [3] [4]. Later, planners
work automatically from a geometric and relational
model of the assembly [5]. The researcher [6]
presented And/Or Graph, for a complete representation
of all possible assembly plans by decomposition based
on cut-set approach. They dealt and showed how to
plan repair sequences using the And/Or graph
representation of assembly plans [7]. Two criteria was
presented by Luiz et al [8] for the selection of assembly
plans: Maximizing the flexibility of sequencing the
assembly tasks and Minimizing the assembly time
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through parallel execution of assembly task which
provided a basis to reduce the makespan. They
reviewed [9] on representations of mechanical
assembly sequences. Randall et al [10] elaborated the
problem of generating the assembly sequences from
the geometry of a goal assembly with a model called
GRASP, stands for Geometric Reasoning Assembly
Sequence Planner. Recent research is directed towards
non-traditional algorithms like Genetic Algorithm (GA)
owing to its simplicity in representation and efficient in
finding near optimal solutions.

B.  Non-Traditional Algorithm

The Genetic Algorithms (GAs) are one of the
most widely used techniques. Basically, GAs is
optimization methodologies based on a direct analogy
to Darwinian natural selection and genetics in biological
systems. They can deal with complex product assembly
planning. However, during the process, the
neighborhood may converge too fast and limit the
search to a local optimum prematurely [11]. Algorithm
is started with a set of solutions (represented by
chromosomes) called population. Solutions from one
population are taken and used to form a new
population. This is motivated by a hope, that the new
population will be better than the old one. Solutions
that are selected to form new solutions (offspring) are
selected according to their fitness - the more suitable
they are the more chances they have to reproduce.
This is repeated until some condition (for example
number of populations or improvement of the best
solution) is satisfied. Some problem-based heuristics
have been used for generating the individuals in the
population [12]. The effect of a local search on the
performance of the Genetic Algorithm in terms of
solution quality, convergence and computation time is
also investigated [13].The influence of tolerance and
clearance on product assimilability in different assembly
sequences is considered and used as a constraint in
assembly planning [14].

An appropriately modified version of the
well-known partially matched crossover, and purposely
defined mutation operators allow the algorithm to
produce near-optimal assembly plans starting from a
randomly initialized population of (possibly non-feasible)
assembly sequences [15].The use of the Ordering
Genetic Algorithms (OGA) such a method avoids the
aggregation of several technical criteria into a unique
fitness value, and lets us compares the individuals of

the population one to each other [16].The feasibility of
using a Genetic Algorithm (GA) for generating and
evaluating assembly planning was introduced and
demonstrated by Ames et al. [17]. They observed a
notable comparison between GA with the cut-set
approach for generating assembly plans. Bonneville et
al applied genetic algorithm to assembly sequence
planning with limited resources [18]. The main
contribution of the method is the incorporation of the
knowledge provided by the specific heuristics of the
problem in a local search procedure. An assembly
planning based on genetic algorithm was addressed by
Bautista et al, incorporating certain criteria to assess
the quality of feasible assembly sequences, like
minimizing the orientation changes, the gripper changes
etc [19]. Del valle et al [1] presented a two algorithmic
approach for task scheduling problem: GA intended for
the earlier stages and A* algorithm for the final ones.
An optimum assembly plan is now sought, selected
from the set of all feasible assembly plans. This model
proposes a genetic algorithm which is different from the
one presented in [20] based on the plans provided by
an expert, as it becomes obsolete when comes to new
product development. The development of an efficient
and robust Genetic algorithm for assembly planning
needs attention. This paper proposes a Genetic
Algorithm  (GA) application for generating optimal
assembly plans.

IIl. PROBLEM DEFINITION

The process of joining parts together to form a
unit is known as assembly. The joining process results
in the connection of one part with parts already
assembled. A sub- assembly is a group of parts having
the property of being able to be assembled
independently of other parts of the product. An
assembly plan is a set of assembly tasks with ordering
amongst its elements. Each task consists of joining a
set of sub-assemblies to give rise to an ever-larger
sub-assembly. An assembly sequence is an ordered
sequence of the assembly tasks satisfying all the
ordering constraints. Each assembly plan corresponds
to one or more assembly sequences. The work is
focused on choosing an optimal or near-optimal
assembly plan. The geometric constraints imposed by
product are represented by liaison graph. A feasible
assembly plans are prepared based on precedence
matrix. The assumptions involved in this work are:
Exactly two parts or sub-assemblies are joined at each
time, whenever parts are joined forming a
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subassembly, all contacts between parts in that
subassembly are established, the feasibility of joining
two subassemblies is independent of how those
sub-assemblies were built.

. SOLUTION METHODOLOGY

The proposed methodology is depicted as a flow
chart shown in Figure1. The Product data is conceived
and a liaison graph is built based on the connection
of parts i.e. geometric constraints and their ordering
amongst them. The precedence relations are derived
from the constraints imposed on a component when
located in the final assembly. A component can be
either completely constrained or partially constrained,
when the component is disassembled along at least
one mating direction. For a component that is
completely constrained, precedence relations exist such
that the component has to be in place before some
other set of components. Next, identify the number of
possible assembly pair's, which represents assembly

9

task. With this, construct a precedence matrix for
generating initial population for the Genetic Algorithm.
A purposely-developed crossover and mutation is used
to manipulate the chromosome, representing the
solution for the formulated problem.

A.  Product modeling

The first stage to search the assembly plans for
a given product is to have a good representation of
the product. This is obtained from liaison graph or
graph of connection. It's a relationship between two
parts which are touching or effectively touching,
whether physically attached or not”. In Liaison graph
parts are dots and joints are lines. A product ‘P’ built
from a set of component ‘C' is modeled by its liaisons
graph [C,[], where {" is the set of the mechanical
liaisons that exist between the components. The
Figures 2 shows a mechanical product in its exploded
form and the liaisons graph. An oil pump assembly
constitutes five components (node) linked by seven
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Fig. 1. Flow Chart Showing the Complete Process Description.
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Fig. 2. A Mechanical Product and its Liaisons Graph.
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Fig. 3. Some Assembly Trees of the Qil Pump.

liaisons (connections). Once the liaisons graph is built,
possible assembly pairs are derived from the graph.
These pairs represents task, which are required to
generate feasible assembly plans. Prior to this, it is
necessary to become aware of how many levels are
required to generate plans or needed to complete final
product. At each level an assembly task is performed
to carry on further level. An assembly tree for a product
‘P is a directed tree whose root represents the product
‘P whose leaves represent the components of ‘P, and
whose intermediate nodes represent the intervening
subassemblies produced by the process. The Figure 3
depicts 10 of the 40 valid assembly plans of the ail
pump assembly.

B.  Proposed genetic algorithm

The description of the genetic algorithm concepts
for the assembly-planning problem is presented in this
section. A flow chart is outlined in the figure 4 depicts
an overall idea of the steps needed to design such an
algorithm for the generation of assembly plans.

Generation of an initial population: The first step in
developing a genetic algorithm for assembly planning
is to map the problem solutions (assembly sequences)
to chromosomes. The chromosome must be encoded
in such a way that it contains the information about
the solution which it represents. The initial population
is generated randomly from the group of precedence
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matrix and the population size is set to ‘. Hence ‘r’
strings will be created randomly. Phenotypic coding is
used to represent the chromosome as shown in figure
5. The each node corresponds to a gene that
represents tasks number in a particular level, required
to build an assembly along with other tasks in that
particular levels of the plan.

The chromosomes, which represent the assembly
plans, are checked for feasibility from the precedence
matrix before undergoing genetic operation. In the
figure, genes 3, 14, 25, 27, 28 and 31 are required to
complete final assembly. All the chromosomes have the
same length. It means that the number of levels is
same for building a complete final product, such that
in each level one task will be completed.

Gene
[ Task]

@
@ ® ®

Fig. 5. A Typical Encoded Chromosome [Assembly
Tree].

Objective function: The objective function is used to
provide a measure of how individuals have performed
in the problem domain. The objective function for the
problem is to obtain an optimum or near-optimal
assembly plans based on the minimization of the
makespan for a given product. The objective function
is defined as follows

Where
m=P-1

P{n) = OQ(n) + DoF(n) (1)

m
C:AP= > P
i

MS = Min[C}; -(3)

M . Number of tasks in each assembly
Tree

P : Number of parts

P(n) . Processing time for the task ‘n’ as /
denote number of task required to
complete a final product.

n : Number of tasks represents an
assembly pair obtained from the
precedence relations of liaisons graph.

OC(n) : Operational complexity

DoF(n) : Subassembly Degrees of freedom

Cyj : Completion time for each Assembly
plan as ’j denotes population size
usually 20.

MS : Makespan for each number of

Assembly plans

The makespan for this purpose is taken similarly
as in [4] consists of two factors:

(i)  Operational complexity: It takes in to
consideration of the type of assembly operation
with the Screw operation weighting as 4, Insertion
as 2 and Placement as 1, in accord with typical
time, fixturing and manipulation requirements.

(i)  Subassembly degrees of freedom: It takes in to
account the difficulty in handling the participating
subassemblies and it proportional to their number
of degrees of freedom. Subassemblies with more
degrees of freedom are unstable and therefore
more difficult to handle.

Evaluate the fitness function: The fitness function is
normally used to transform the objective function value
in to a measure of relative fitness. Since the objective
is a minimization problem, the objective function value
itself is used as fitness function. The fitness function
must be calculated for the initial set population and
after performing genetic operation so as to evaluate the
fitness for each string. The significance of evaluating
the fitness value for each string provides information to
decide whether the strings are carried for next iteration
(generation) to obtain the desired result.

Selection for reproduction: There are various
methods to select the chromosomes for reproduction.
Some are Roulette wheel selection, Boltzman selection,
Tournament selection, Rank selection, Steady state
selection etc. But in this work the Rank selection
method is utilized.
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Rank selection: Once after an initial population is
generated, fitness value is computed for each string in
that population. This leads the chromosomes having an
equal chance to be selected. But, this method leads to
slower convergence, because; the best chromosomes
do not differ much from the other ones. Selection is
the process of determining the number of times, or
trials, a particular individual are chosen for reproduction
and, thus, the number of offspring that an individual
will produce. The selection of individuals can be viewed
as two separate processes:

1. Determination of the number of trials an individual
can expect to receive.

2. Conversion of the expected number of trials into
a discrete number of offspring.

Genetic operator Two families of genetic operators
purposely have been developed for searching the
whole solution space. The first includes operators that
search locally for new sequences from parent
chromosomes. The other family of operators is intended
to search for sequences in assembly plans of parents

Parent 1

as well as the crossbreed chromosomes. This is
basically made by introducing a new task in a solution,
and substituting certain tasks in order to maintain the
validity of the chromosomes.

Crossover: The basic operator for producing new
chromosomes in the GA is that of crossover. Like its
counterpart in nature, crossover produces new
individuals that have some parts of both parent’s
genetic material. The simplest form of crossover is that
of single-point crossover. In this approach strings are
subjected to crossover based on the specified
crossover probability. The probability of crossover is
usually high and ranges from 0.6 to 0.8 and this has
been considered in the problem. Once the string is
chosen for crossover, its mate and crossover site are
selected randomly. But in this problem, the crossover
point is fixed to 2, as to maintain the precedence
relationship among the task. This results in the
formation of offspring retaining its feasibility. Hence in
this assembly problem a ‘Selective Crossover’ is
utilized to perform the crossover operation between the
particular group of strings i.e. assembly trees.

Parent 2

@ Crossover point @

s
& ®|@

ol @\
&

Offspring 1

Reproduction
by crossover

B & @

@ @& @

©,
/ \

D ® @

Offspring 2

Fig. 6. Proposed Crossover for the Encoded String.
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Gene
[Task]

(8)
@ @
(@)

Fig. 7. Proposed Mutation for the Encoded String

This can be easily understandable by the figure
6. In the parent 1 the task 25 is preceded by task 31
can be replaced by the adjacent parent 2 with the task
26 and task 30, as task 30 precedes task 26. The
significance of ‘P, is the amount of information
transmuted from the parent to offspring during mating.

Mutation: Mutation is a random process where another
to produce a new genetic structure forcibly replaces
one allele of a gene. In GA, mutation is randomly
applied with low probability ‘P, typically in the range
0.001 and 0.05, and modifies elements with in the
chromosomes. Once the generated probability for
mutation is with in the specified probability, then the
string can be mutated. For this problem the mutation
site is fixed. As a result a gene is forcibly introduced

in the selected string at particular level and certain
tasks are replaced so as to maintain the precedence
that results in retaining feasibility. This results in
generation of offspring. This can be easily
understandable by the Figure 7. As shown in the figure
the mutation site is level 1 and hence the task 3 is
forcibly replaced by another task 2. Since mutating
randomly makes the sequence infeasible. These are
possibilities such that interchange of tasks lends to an
infeasible string. As shown, after forcibly replacing the
task 2, the other task, which precedes this task, are
to be inserted to maintain the feasibility. Hence a new
offspring is created in which 2 is preceded by 8, 31,
27, 21, 28. Once mutation is completed, the strings are
arranged in the ascending order of fitness value. After
sorting the strings, the new population is cut down to
the old population size.

Thus one generation of the genetic process has
been completed. To maintain the size of the original
population, the new individuals have to be reinserted
into the old population. This process continues till a
termination criterion is reached i.e. an optimum or near
optimal assembly plan with minimum makes pan is
found.

IV. CASE EXAMPLE

To validate the proposed methodology a simple
product is considered. The product is a flash light
assembly (Torch) shown in the Figure 8, consists of 7
parts. For which liaisons graph is shown in Figure 9.
A flash light assembly constitutes seven components
(node), linked by five liaisons (connections). Once the
liaisons graph is built, possible assembly pairs are
derived from the graph. These pairs represents task,
which are required to generate feasible assembly plans.
Prior to this, it is necessary to become aware of how

T

F G

A-Ring: B-Lens: C-Bulb: D-Reflector: E-Case: F-Battery: G-End
Fig. 8. Exploded View of a Flash Light Assembly.
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L3: graph of connection between Reflector and Case
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@ @ ®
Case Battery End

L2: graph of connection between Bulb and Reflector
L4: graph of connection between Case and Battery

Fig. 9. Liaisons Graph for the Flash Light Assembly

Ring
Lens —_—
Bulb

Reflector —
Case - P
Battery —
End

Ring

Lens —_—
Bulb

Reflector

Case :I
Battery —
End |

Fig. 10. Some Assembly Tree for the Flash Light Product

many levels are required to generate plans or needed
to complete final product. At each level an assembly
task is performed to carry on further level. Each
assembly plan can be represented by an assembly tree
as shown in Figure 10. The best plan corresponds to
the tree that has the minimum time An assembly tree
for a product ‘P is a directed tree whose root
represents the product ‘P whose leaves represent
the components of ‘P, and whose intermediate nodes
represent the intervening subassemblies produced by
the process. With this information a precedence matrix
is constructed. The solution is represented in semantic
as well as in and/Or graph form, can be seen from
Figure 11.

Number of feasible subassembly pairs represents
task and processing times for evaluation for the flash
light product: is shown in Table 1.For this type of
evaluation function, the search for the best plan can
be conducted using genetic algorithm. Thus, the
proposed genetic algorithm is applied for the flash light
product. The table 2 shows a portion of feasible initial
population with its objective function generated by the

(@) In Semantic form:

((Ring, Lens), (Bulb (((Reflector, Case), Battery),
End)))

(b) In and/Or graph form:

[ABCDEFG]
AN

Fig. 11. Representation of Solution in Semantic and
And/Or Graph
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GA. The table 3 shows a portion of feasible final Assembly Sub-Assembly Processing
population with its objective function generated by the Task Pairs [Notation] Time(Min)
GA. The terminal condition is that when there is no > C-D 4
improvement in the objective function the iteration stops 8
and the assembly sequence is forwarded for 29 |D-E 4
scheduling. 30 E-F 5
Table 1. Set of Feasible Sub-Assembly Sets and 31 |F-G 1
Processing Times for Evaluation for the Flash
Light Product Table 2. A Portion of Feasible Initial Population
_ with its Objective Function Generated by the GA
Assembly Sub-Assembly Processing
Task Pairs [Notation] Time(Min) Process
1 ABCDEF-G 5 String ing
e Number Assembly Sequence Time
2 - / (Min)
3 ABCD-EFG 7
1 3 | 1425|3127 |28 27
4 AB-CDEFG 6
5 ABCD-EF - 2 14 126 | 30 | 27 | 28 27
6 AB-CDEF 5 3 1 5 114127 |28 | 30 26
7 ABCDE-F 3 4 2 | 9 | 14|27 |28 | 31 25
g8 |ABCD-E 6 5 3 |14 |25(31|27]28| 27
9 |AB-CDE 5 6 | 1|6 |16]27|28]3]| 25
10 C-DEFG 5
7 3 |14 ]26|30 |27 |28 27
11 CD-EFG 7
> CDEF-G 5 8 116 (1521 27 |28 24
3 |CDE-FG - 9 |2 |9 |14|27|28[31| 25
14 AB-CD 7
CDE-F Table 3. A Portion of Feasible Final Population
15 2 with its Objective Function Generated by the GA
16 CD-EF 7
. Processing
C-DEF
17 5 String Assembly Sequence Time
18 D-EFG 7 Number (Min)
19 DEF-G 5
S E-TG 2 4 1271101923 |29 23
20 i} ! 2 | aler|10]19]23]20| 23
21 |CD-E 6 3 |alo7[10]19]28]29] 23
22 |C-DE 6 4 | 42710192320 23
23 |DE-F 2 5 |4 |27|10(19|23]29] 23
24 |D-EF 6 6 |4|27|10]19]23]20] 23
25 |E-FG 7 7 |4ler]10|19]23]20] 23
2% |EF-G 6 8 4 |27(10[19]23[29| 23
27 |A-B 1 9 4 [27(10]19]23]|29| 23
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V. CONCLUSION

In this work, a Genetic Algorithm is proposed for
scheduling an assembly task, with the objective as the
minimization of makespan. It starts from the liaisons
graph, which forms the basis for constructing
precedence matrix. Further this precedence matrix and
geometric constraints are used to generate a feasible
assembly plans (or) to verify for feasibility, represents
an initial set of population to carry out genetic
operation. The assembly plans are evaluated based on
make span. A purposely-developed genetic operator is
used to perform crossbreed and mutation function.
Thus a Genetic Algorithm is proposed to solve an
assembly sequence problem, a much more difficult
problem than other sequencing problems. The
proposed methodology can be adapted to assemblies
where computational time is significant.
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