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Abstract

In this paper we discuss an analytical solution of unsteady MHD flow between two parallel plates through a porous
medium with uniform suction in the lower plate and uniform injection in the upper plate. External uniform magnetic field
are applied perpendicularly to the plates while the fluid motion is subjected to an exponential axial and transverse velocity
and pressure gradient. The solution of the problem is obtained with the help of similarity transformation. The exact
solution of the velocity in the porous medium is analytically derived, its behaviour computationally discussed with reference
to the various governing parameters. The axial and transverse velocity of the fluid and the pressure distribution are
presented. Analytical expression is given for the velocity field of the fluid and the effects of the various parameters
entering into the problem are discussed with the help of graphs.
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Nomenclature
p - Density of the fluid
h - Height of the channel
K - Permeability of the porous medium
u - Coefficient of viscosity
y - Stream function
o - Electrical conductivity of the fluid
By - Electromagnetic induction
Hy - Transverse magnetic field
u - Axial component of the velocity
v — Transverse Component of the velocity
n - Dimensionless distance
l. INTRODUCTION

The MHD flow between two parallel plates is
called Hartmann flow. It has many Applications in MHD
power generators, MHD pumps, aerodynamic heating.
Hartmann and Lazarus [1] studied the influence of a
transverse uniform magnetic field on the flow of a
conducting fluid between two infinite plates. Then a lot
of research work conceming the Hartmann flow has
been obtained under different physical effects. The
Study of flow has been carried out by several authors.
Many researchers have reported that the flow is

electrically conducting fluid [2-6]. MHD is the fluid
mechanics of electrically conducting fluids, some of
these fluids include liquid metals such as mercury,
molten iron etc.,and ironized gases known as physicists
as Plasma, one example being the solar atmosphere.
If an electrically conducting fluid is placed in a constant
magnetic field, the motion of the fluid induces current
which create forces on the fluid. The governing
equations that have been solved either analytically or
numerically.

The requirements of modern technology have
stimulated the interest in fluid flow studies, which
involve the interaction of several phenomena. One such
study is presented, when a viscous fluid flows over a
porous surface, because of its importance in many
engineering problems such as flow of liquid in a porous
bearing (Joseph and Tao [7]), in the field of water in
river beds, in petroleum technology to study the
movement of natural gas, oil and water through the oil
reservoirs, in chemical engineering for filtration and
purifications process. Cunningham and Williams [8] also
reported several geophysical applications of flow in
porous medium, viz. porous rollers and its natural
occurrence in the flow of rivers through porous banks
and beds and the flow of oil through underground
porous rocks. The mathematical theory of the flow of
fluid through a porous medium was initiated by Darcy
[9]. For the steady flow, he assumed that viscous
forces were in equilibrium with external forces due to
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pressure difference and body forces. Later on Brinkman
[13] proposed modification of the Darcy’s law for porous
medium. In most of the examples, the fluid flows
through porous medium, have two regions. In region |,
the fluid is free to flow and in region I, the fluid flows
through the porous medium. To link flows in two
regions certain, matching conditions are required at the
interface of two regions. This type of couple flow, with
different geometry and with several kinds of matching
conditions, has been examined by several authors, viz.
William [10] and Ochoa-Tapia et al. [11]. Srivastava et
al. [12] discussed the flow and heat transfer of a
viscous fluid confined between a rotating plate and a
porous medium, by assuming that the flow in the
porous medium was governed by Brinkman equation
[13] and that in the free flow region by the
Navier-Stokes equations. The problem (in which the
liquid occupies the semi-infinite region on one side of
the disk and the motion is axially symmetric) of steady
forced flow of an incompressible viscous fluid against
a rotating disk was studied by Schlichting et al[14].
Ibic[15], has analysed Momentum transfer at the
boundary between a porous medium and a
homogeneous fluid — Il A complete review of this paper
and also same related work has been given by Moore
[16]. Recently, Chaudhary et al. [17] discussed the flow
of viscous incompressible fluid confined between a
rotating disk and a porous medium.

The two dimensional steady state laminar flow in
channels with porous walls has numerous applications
in various branches of Engineering and Technology
such as boundary layer control and transpiration
cooling problems. It plays an important role in the study
of problems which involve diffusion phenomena in a
flowing gas stream. Berman[18] was the first researcher
who studied the problem of steady flow of an
incompressible viscous fluid through a porous channel
with rectangular cross section,when the Reynolds
number is low. He obtained a perturbation solution
assuming normal wall velocities to be equal. Then
Sellars[19] extended the problem studied by Berman
when the Reynolds number is very high. Afterwards
Yuan[20] and Terill[21] studied the problem for various
values of suction and injection Reynolds numbers. Terill
and Shrestha[22] have analysed the same problem,
Laminar flow through parallel and uniformly porous
walls of different permeability .Drake[23] has considered
the flow of an incompressible viscous fluid in a long
channel of rectangular section due to a periodic

pressure gradient. Ganesh.S, Krishnambal[24] analysed
Magnetohydrodynamic flow of viscous fluid between
two parallel porous plates.

IIl. ASSUMPTIONS
1. The plates are porous.
Flow is between non conducting parallel plates.

MHD flow is considered.

> w

Viscosity and density of the fluid is considered to
be constant.

5. u and v are axial and transverse velocity
components in the direction of x and y
respectively.

ll. GENERAL SOLUTION TO THE PROBLEM

The flow of an incompressible viscous fluid
between two parallel porous plates y=0 and y=his
considered in the presence of a transverse magnetic
field which is applied perpendicular to the walls in a
parallel plate channel bounded by a loosely packed
porous medium. The fluid is driven by a uniform
pressure gradient parallel to the channel plates. Let u
and v be the velocity components in the x and y
directions respectively at time t in the flow field.

. .. du adv ..(1)
Th t f cont —+—=0
e equation of continuity is 8X+8y

Navier Stoke Equations are :

By the discussions in the previous sections, Let
us choose the solutions of the equations (1)-(3)
respectively as

u=u(xy e ™ ()
v=v(x ye ™
p=pxype ™ .(4)

With the boundary conditions
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ux0)=0
v(x 0)=v

u(x, h) =o} ()

V(X h)=Vvy
Let the stream functions are

oy
0 X

oy

ulxy = 3y and v(x, ) =—

From equations (2), (3) and (6), we have

dy_ dp 0

—np ay axﬂtay(V v
Jy uam (7)
alu ap 0 2 .(8)
ax ay Max(v W)

Differentiating equations (7) & (8) with respect to
Y & X partially, we get

% F o &y
=u—75 (VW) +np—
Bza v woy -(9)
Top Koy
*p & Py (10)

2 w2y pa Y
Jxdexy “a,g(v v)=ne X

From (9) and (10), we have
[Vz_[GeB%u+(u/K)—anV2w:0...(11)

u
The equation of continuity can be satisfied by a
stream function of the form

2X
ijm)

where ug is the average entrance velocity and
_Jy
h

v n)=h[%— .(12)

is a dimensionless distance.

Y
Here a=1-—,0<v <
V2

Substituting (12) in (11), we have

Flow Between Two Parallel ... 3

) —of ' ()=0

where

2_CeBur@wh—pn
u

IV. MATHEMATICAL SOLUTION TO THE
PROBLEM

Equation (13) reduces to the form
(D" = 02 D) (1) =0
with the boundary conditions

fO)=1-a f1)=1
f(0)=0, f(1)=0

(14)

.(15)

Hence the solution of (1
boundary condition (15) is

4) subjecting to the

] ..(16)

Substituting the value of in the stream function

X
T]f(ﬂ)

Hence the Axial Velocity of the Fluid

2
2 0. hsinh o h+4 (1 —cosh o f)

f(n)=

—2 (1 —a)o hsinh (o0 h) +2 ao hm sinh (o h)

4 (1 —cosh (o h)) —2 a(1 —cosh(a h))
+2acosh (oo h(m—1) —2acosh (o hm)

v n)=h[%— .(17)

nt

u=uxy e

a‘lf gt
“oy ¢

U VoX
:[—O—L]xe_”tx

a h

2 o hasinh (o h) +2a o hsinh (oL (y— h) —2a o hsinh o )
2 o hsinh oo h+4 (1 —cosh(a h))
..(18)

The Transverse Velocity of the Fluid

v=v(xype ™

A"
0 X
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p(x,n)—p(0,0)=[

G
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Vo 6 nt

2o hsinhah+4(1—cos ha h)

4 (1 —cos h(oh))—2a(1—cos h(a h))—
(1—a ahsinh(ah)y+2aaysinh(oh) +
2acos h (o (y— h)) —2acos h (o y)

V. PRESSURE DISTRIBUTIOIN

UoX V2X2
a 2h

)

- {sedo-rorn

. (19)

The Pressure Drop can be obtained from (7), (8)
and (12)
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Fig. 6. Transverse Velocity of the Fluid for different

VIl. RESULT AND DISCUSSIONS

This paper analyses the performance of fluid
subject to various parameters. Figure 1&2 shows that
the velocity of the fluid increases when x,uq increases.
Figure 3 shows that velocity of the fluid decreases as
t increases. Figure 4 shows that velocity of the fluid
decreases when y lies between 02 & 0.8 as By
increases. Figure 5 & 6 shows that the transverse
velocity of the fluid increases when t,By increases.
Figure 7 shows that pressure of the fluid increases as
t increases. Figure 8 shows that pressure of the fluid
decreases as x increases. Figure 5,6 & 8 shows that
the magnitude of the upper plate and lower plate are
same. Figure 7 shows that the magnitude of the upper
is higher than the magnitude of the lower plate..

The above results reduce to the results of [24]
when K is infinity.
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