National Journal on Electronic Sciences and Systems, Vol. 2 No. 2 October 2011 67

POWER OPTIMIZATION IN WIRELESS NETWORKS USING DYNAMIC VOLTAGE
SCALING ALGORITHMS

Gavaskar Vincent1, Sasipraba T. 2

'Research Scholar, Sathyabama University, Chennai, India
%Professor & Dean, Sathyabama University, Chennai, India
Email: "gavaskarvins@gmail.com

ABSTRACT

Execution of tasks to be completed by specified deadline is paramount important for any scheduling algorithms. Most
DVS algorithm doesn’t consider real-time constraints and are based on solely average computational throughput. Since
they use a simple feedback mechanism such as detecting the amount of idle time on the processor over a period of
time and adjust the computational load, they cannot provide any timeliness guarantees and task may miss their execution
deadlines. To alleviate the difficulty, we propose a simple mechanism for providing voltage scaling while maintaining
real-time schedulability. In this mechanism we select the lowest possible operating frequency that will allow the RM or
EDF scheduler to meet all the deadlines for a given task set. This frequency is set statistically and will not be changed
unless the task set is changed. designing of SimDVS, a unified simulation environment for evaluating dynamic voltage
scaling (DVS) algorithms. At present it evaluates two static RT-DVS algorithms and three dynamic RT-DVS algorithms.
All RT-DVS algorithm’s task execution module differs with each other. The SimDVS has been designed such a way that
any new DVS algorithm can be evaluated easily by adding new task execution module to SimDVS. It also supports to

add new machines specifications to in it.

Key words: SimDVS; RT-DVS; EDF scheduler

l. INTRODUCTION

The fundamental tradeoff between performance
and battery life remains critically important. DVS tries
to address the tradeoff between performance and
battery life by taking into account two important
characteristics of most current computer systems: (1)
the peak computing rate needed is much higher than
the average throughput that must be sustained; and (2)
the processors are based on CMOS logic. The first
characteristic effectively means that high performance
is needed only for a small fraction of the time, while
for the rest of the time, a low-performance, low-power
processor would suffice. We can achieve the low
performance by simply lowering the operating
frequency of the processor when the full speed is not
needed. DVS goes beyond this and scales the
operating voltage of the processor along with the
frequency. This is possible because static CMOS logic
used in the vast majority of microprocessors today, has
a voltage-dependent maximum operating frequency, so
when used at a reduced frequency, the processor can
operate at a lower supply voltage.

A. Real-time issues

For time-critical applications, however, the scaling
of processor frequency could be detrimental.

Particularly in real-time embedded systems like portable
medical devices and cellular phones, where tasks must
be completed by some specified deadlines, most
algorithms for DVS known to date cannot be applied.
These DVS algorithms do not consider real-time
constraints and are based on solely average
computational throughput. Typically, they use a simple
feedback mechanism, such as detecting the amount of
idle time on the processor over a period of time and
then adjust the frequency and voltage to just handle
the computational load. This is very simple and follows
the load characteristics closely, but cannot provide any
timeliness guarantees and tasks may miss their
execution deadlines.

As an example, in an embedded camcorder
controller, suppose there is a program that must react
to a change in a sensor reading within a 5 ms deadline
and that it requires up to 3 ms of computation time
with the processor running at the maximum operating
frequency. With a DVS algorithm that reacts only to
average throughput, if the total load on the system is
low, the processor would be set to operate at a low
frequency, say half of the maximum and the task now
requiring 6 ms of processor time cannot meet its 5 ms
deadline. In general, none of the average

68 National Journal on Electronic Sciences and Systems, Vol. 2 No. 2 October 2011

throughput-based DVS algorithms found in literature
can provide real-time deadline guarantees.

In order to realize the reduced
energy-consumption benefits of DVS in a real-time
embedded system, we need new DVS algorithms that
are tightly-coupled with the actual real-time scheduler
of the operating system. In the classic model of a
real-time system, there is a set of tasks that need to
be executed periodically. Each task Ti, has an
associated period Pi, and a worst-case computation
time Ci. The task is released periodically once every
Pi time units and it can begin execution. The task
needs to complete its execution by its deadline,
typically defined as the end of the period i.e., by the
next release of the task. As long as each task Ti uses
no more than Ci cycles in each invocation, a real-time
scheduler can guarantee that the tasks will always
receive enough processor cycles to complete each
invocation in time. Of course, to provide such
guarantees, there are some conditions placed on
allowed task sets often expressed in the form of
schedulability tests (P. Pillai and K.G. Shin 2001). A
real-time scheduler guarantees that tasks will meet their
deadlines given that:

Clthe task set is schedulable (passes
schedulability test), and

C2.no task exceeds its specified worst-case
computation bound.

When the DVS is applied in a real-time system
it must ensure that both of these conditions hold. We
have collected algorithms to integrate DVS mechanisms
into the two most-studied real-time schedulers, Rate
Monotonic (RM) and Earliest-Deadline-First (EDF)
schedulers.

RM is a static priority scheduler and assigns task
priority according to period it always selects first the
task with the shortest period that is ready to run
(released for execution). EDF is a dynamic priority
scheduler that sorts tasks by deadlines and always
gives the highest priority to the released task with the
most. In the classical treatments of these schedulers,
both assume that the task deadline equals the period
(i.e., the task must complete before its next invocation)
that scheduling and other overheads are negligible and
that the tasks are independent (no task will block
waiting for another task). In our design of DVS to

real-time systems, we maintain the same assumptions
since our primary goal is to reduce energy consumption
rather than to derive general scheduling mechanisms.
In the rest of this section, we present our algorithms
that perform DVS in time-constrained systems without
compromising deadline guarantees of real-time
schedulers.

B. Static voltage scaling

We first propose a very simple mechanism for
providing voltage scaling while maintaining real-time
schedulability. In this mechanism we select the lowest
possible operating frequency that will allow the RM or
EDF scheduler to meet all the deadlines for a given
task set. This frequency is set statically and will not be
changed unless the task set is changed.

To select the appropriate frequency, we first
observe that scaling the operating frequency by a factor
X (0 < x < 1) effectively results in the worst-case
computation time needed by a task to be scaled by a
factor 1/x while the desired period (and deadline)
remains unaffected. We can take the well-known
schedulability tests for EDF and RM schedulers from
the real-time systems literature and by using the scaled
values for worst-case computation needs of the tasks
can test for schedulability at a particular frequency. The
necessary and sufficient schedulability test for a task
set under ideal EDF scheduling requires that the sum
of the worst-case utilizations (computation time divided
by period) be less than one, i.e.,

Ci/P1+ C2/PR2+ C3/P3+ ... + Cn/Pn< 1 (1)

Using the scaled computation time values, we
obtain the EDF schedulability test with frequency
scaling factor ?:

Ci/Pl+C2/P2+C3/P3+...+CnPn<a. (2

Similarly, we start with the sufficient (but not
necessary) condition for schedulability under RM
scheduling and obtain the test for a scaled frequency.
The operating frequency selected is the lowest one for
which the modified schedulability test succeeds. The
voltage, of course, is changed to match the operating
frequency. Assume that the operating frequencies and
the corresponding voltage settings available on the
particular hardware platform are specified in a table
provided to the software.

Gavaskar Vincent et al. : Improving QOS in Wireless Networks... 69

EDP_test (ov):

(C1/P1+C2/P2+ C3/P3+ ...+ Cn/Pn<)

return true;

else return false;

RM-test (cx):

f(VTie{N, T2, T3,... Th| I<P2<P3L...<Pn}
[t 101 + ... +[n/] (<Ci< o *)
return true;
else return false;

select frequency (X):

use lowest freq.

fie{t, b, Bl f..MWho<h<h<f.. <fn}

such that RM-test (fifm) or EDF_test (fi / fm) } is true.

Fig. 1. Static voltage scaling algorithm for EDF and
RM schedulers

T T2 LAl T2
5 fo i
33‘!:“%_?1
5} ™ T2 I ™ T2 I
StaicRM 4 g TImesas '
falsatoys B daading o
o
go ™ T T T2
; ! fo {son
Fig. 2. Static voltage scaling
Table 1: Example Task Set
Task (i) | ComPUting | poiod (Pi)
Time (Ci)
1 3 ms 8 ms
2 3 ms 10 ms
3 1 ms 14 ms

summarizes the static voltage scaling for EDF and RM
scheduling, where there are m operating frequencies
A, R, 13 ...fmsuch that A<R<B<...<fm

C. Cycle-Conserving RT-DVS

Although real-time tasks are specified with
worst-case computation requirements they generally
use much less than the worst case on most
invocations. To take best advantage of this a DVS
mechanism could reduce the operating frequency and
voltage when tasks use less than their worst-case time

allotment and increase frequency to meet the
worst-case needs. When a task is released for its next
invocation we cannot know how much computation it
will actually require, so we must make the conservative
assumption that it will need its specified worst-case
processor time. When the task completes, we can
compare the actual processor cycles used to the
worst-case specification. Any unused cycles that were
allotted to the task would normally be wasted idling the
processor. Instead of idling for extra processor cycles,
we can devise DVS algorithms that avoid wasting
cycles (hence “cycle conserving’) by reducing the
operating frequency. These algorithms are
tightly-coupled with the operating system’s task
management services, since they may need to reduce
frequency on each task completion and increase
frequency on each task release. The main challenge
in designing such algorithms is to ensure that deadline
guarantees are not violated when the operating
frequencies are reduced.

For EDF scheduling, as mentioned earlier, we
have a very simple schedulability test: as long as the
sum of the worst-case task utilizations is less than x,
the task set is schedulable when operating at the
maximum frequency scaled by factor x. If a task
completes earlier than its worst-case computation time
we can reclaim the excess time by recomputing
utilization using the actual computing time consumed
by the task. This reduced value is used until the task
is released again for its next invocation. We illustrate
this in Figure 2 using the same task set and available
frequencies as before, but using actual execution times
from Table 1. Here, each invocation of the tasks may
use less than the specified worst-case times but the
actual value cannot be known to the system until after
the task completes execution. Therefore, at each
scheduling point (task release or completion) the
utilization is recomputed using the actual time for
completed tasks and the specified worst case for the
others and the frequency is set appropriately.

LU =0.746
E 1.00 C'.(“N 0)21 0546 0.296
g 075 . - . -
= 0421 0.4% 0206 0,296
Tosg ™ |m2 } i
s 12 I
0 5 0 15 ms

Fig. 3. Example of cycle-conserving EDF

70 National Journal on Electronic Sciences and Systems, Vol. 2 No. 2 October 2011

Table 2. Two Invocations of Task Set

Task Invocation 1 Invocation 2
1 2 ms 1 ms
2 1 ms 1 ms
3 1ms 1 ms

in the reduced-utilization state, the total savings can be
significant.

Select_frequency ():

use lowest freq.

fic{h, b, B fa6k..Imh<h<h<fi..<fm}
such that Ui+ Up + Uz + ... Un< fiffm)

upon task_release (Tj):

set Ui to CiPr
select_frequency ():

upon task_compltion (Tj):
set Uj to ccilPi

select_frequency ();

Fig. 4. Cycle-conserving DVS for EDF schedulers

The algorithm (figure 4) itself is simple and works
as follows. Suppose a task Ti completes its current
invocation after using cci cycles which are usually much
smaller than its worst-case computation time Ci. Since
task Ti uses no more than cci cycles in its current
invocation we treat the task as if its worst-case
computation bound were cci With the reduced
utilization specified for this task, we can now potentially
find a smaller scaling factor ? (i.e., lower operating
frequency) for which the task set remains schedulable.
Trivially, given that the task set prior to this change
was schedulable, the EDF schedulability test will
continue to hold and 7/ (which has completed
execution) will not violate its lowered maximum
computing bound for the remainder of time until its
deadline. Therefore, the task set continues to meet
both conditions C1 and C2 imposed by the real-time
scheduler to guarantee timely execution and as a
result, deadline guarantees provided by EDF scheduling
will continue to hold at least until Tiis released for its
next invocation. At this point, we must restore its
computation bound to Ci to ensure that it will not violate
the temporarily-lowered bound and compromise the
deadline guarantees. At this time, it may be necessary
to increase the operating frequency. At first glance, this
algorithm does not appear to significantly reduce
frequencies, voltages and energy expenditure.
However, since multiple tasks may be simultaneously

Assume fj is frequency set by static scaling
algorithm

select_frequency ():

set sm= max_cycles_until_next_deadline ();

use lowest freq.
fie{f, b, b, B M6 .. WhA<b<h<fy.. <fn}

such that (d1 + ... + dp)/sm < fi/fm

upon task-release (Ti):

set ¢_lefti=C;

set sm= max_cycles_until_next_deadline();
set §j=sm* fifm;

allocate_cycles (s));

select_frequency ();

upon task_completion (Tj):
set ¢_lefti=0;

set di=0;
select_frequency ();

during task_execution (Tj):
decrement c¢_Jefti and d

allocate cycles (k): /* tasks sorted by period */

for i=1 to
nTe{T, T3 .. ThlPISP<P3<... <Py}

if (c_lefti< k)
set di= c_leff;
set k= k—c_ left;

else
set di=k
set k=0;

Fig. 5. Cycle-conserving DVS for RM schedulers

We could use the same schedulability test-based
approach to designing a cycle-conserving DVS
algorithm for RM scheduling, but as the RM
schedulability test is significantly more complex
(O(m2)) where, n is the number of tasks to be
scheduled), we will take a different approach here. We
observe that even assuming tasks always require their

worst-case computation times, the statically-scaled RM
mechanism discussed earlier can maintain real-time
deadline guarantees. We assert that as long as equal
or better progress for all tasks is made here than in
the worst case under the statically-scaled RM
algorithm, deadlines can be met here as well
regardless of the actual operating frequencies. We will
also try to avoid getting ahead of the worst-case
execution pattern this way, any reduction in the
execution cycles used by the tasks can be applied to
reducing operating frequency and voltage.

Although conceptually simple, the actual algorithm
(Figure 5) for this is some what complex due to a
number of counters that must be maintained. In this
algorithm, we need to keep track of the worst-case
remaining cycles of computation c_lefti for each task
Ti. When task Tiis released c_lefti is set to Ci We
then determine the progress that the static voltage
scaling RM mechanism would make in the worst case
by the earliest deadline for any task in the system. We
obtain sj and sm, the number of cycles to this next
deadline, assuming operation at the statically-scaled
and the maximum frequencies, respectively. The sj
cycles are allocated to the tasks according to RM
priority order, with each task Ti receiving an allocation
di< c_lefti corresponding to the number of cycles that
it would execute under the statically-scaled RM
scenario over this interval. As long as we execute at
least di cycles for each task Ti (or if Ti completes) by
the next task deadline, we are keeping pace with the
worst-case scenario, so we set execution speed using
the sum of the d values. As tasks execute, their c¢_left/
and d values are decremented. When a task Ti
completes, c_lefti and di are both set to 0 and the
frequency and voltage are changed. Because we use
this pacing criteria to select the operating frequency
this algorithm guarantees that at any task deadline, all
tasks that would have completed execution in the
worst-case statically-scaled RM schedule would also
have completed here, hence meeting all deadlines.

These algorithms dynamically adjust frequency
and voltage, reacting to the actual computational
requirements of the real-time tasks. At most, they
require 2 frequency / voltage switches per task per
invocation (once each at release and completion), so
any overheads for hardware voltage change can be
accounted in the worst-case computation time
allocations of the tasks. As we will see later, the

algorithms can achieve significant energy savings
without affecting real-time guarantees.

D. Look-Ahead RT-DVS

The final (and most aggressive) RT-DVS
algorithm that we introduce in this project attempts to
achieve even better energy savings using a look-ahead
technique to determine future computation need and
defer task execution. The cycle-conserving approaches
discussed above assume the worst case initially and
execute at a high frequency until some tasks complete
and only then reduce operating frequency and voltage.
In contrast, the look-ahead scheme tries to defer as
much work as possible and sets the operating
frequency to meet the minimum work that must be
done now to ensure all future deadlines are met. Of
course, this may require that we will be forced to run
at high frequencies later in order to complete all of the
deferred work in time. On the other hand, if tasks tend
to use much less than their worst-case computing time
allocations, the peak execution rates for deferred work
may never be needed and this heuristic will allow the
system to continue operating at a low frequency and
voltage while completing all tasks by their deadlines.

The actual algorithm for look-ahead RT-DVS with
EDF scheduling is shown in Figure 6. As in the
cycle-conserving RT-DVS algorithm for RM, we keep
track of the worst-case remaining computation c_lefti
for the current invocation of task Ti This is set to Ci
on task release, decremented as the task executes and
set to 0 on completion. The major step in this algorithm
is the deferral function. Here, we look at the interval
until the next task deadline, try to push as much work
as we can beyond the deadline and compute the
minimum number of cycles x, that we must execute
during this interval in order to meet all future deadlines.
The operating frequency is set just fast enough to
execute ‘s’ cycles over this interval.

Select_frequency (x);

use lowest freq.
fie{f, bRk bk .. Wh<h<B<fy.. <f;}

such that x < fifn

upon task_release (T));
set ¢ leffi= Ci
defer ();

72 National Journal on Electronic Sciences and Systems, Vol. 2 No. 2 October 2011

upon task_completion (Tj):
set c— leffi=0;
defer ();

during task_execution (Tj):
decrement c_left;

defer ():
set U=Ci/P1+ Co/Po+ C3/P3+ ... + Ci/Pr;
set s=0;
for i=1to
nTie{M, To, T3, T4, ... Tn| D1>Do>D3>... > Dp}
/* Note: reverse EDF order of tasks */
set U=U- CiP;
set x= max (0, c_lefti=(1 — U) (Dj— Dp));
set U= U+ (c_lefti— \)ADj— Dp);

set s=x+ X

select_frequency (s/ (Dp— current_time));

Fig. 6. Look ahead DVS for EDF schedulers

To calculate, we look at the tasks in reverse EDF
order (i.e., latest deadline first). Assuming worst-case
utilization by tasks with earlier deadlines (Effectively
reserving time for their future invocations) we calculate
the minimum number of cycles x, that the task must
execute before the closest deadline Dn in order for it
to complete by its own deadline. A cumulative utilization
U is adjusted to reflect the actual utilization of the task
for the time after Dn. This calculation is repeated for
all of the tasks using assumed worst-case utilization
values for earlier-deadline tasks and the computed
values for the later-deadline ones. The ‘s’ is simply the
sum of the x values calculated for all of the tasks and
therefore reflects the total number of cycles that must
execute by Dn in order for all tasks to meet their
deadlines. Although this algorithm very aggressively
reduces processor frequency and voltage it ensures
that there are sufficient cycles available for each task
to meet its deadline after reserving worst-case
requirements for higher-priority (earlier deadline) tasks.

E. Summary of RT-DVS algorithms

All of the RT-DVS algorithms we presented thus
far should be fairly easy to incorporate into a real-time
operating system and do not require significant
processing costs. The dynamic schemes all require
computation (assuming the scheduler provides an EDF

sorted task list) and should not require significant
processing over the scheduler. The most significant
overheads may come from the hardware voltage
switching times. However in all of our algorithms, no
more than two switches can occur per task per
invocation period, so these overheads can easily be
accounted and added to the worst-case task
computation times.

For above examples we assume that the 0.5,
0.75 and 1.0 frequency settings need 3, 4, and 5 volts
respectively and that idle cycles consume no energy.
More general evaluation of our algorithms will be done
in the next section.

IIl. SIMULATION AND RESULT ANALYSIS

A. Varying machine specifications

All of the previous simulations used three set of
available frequency and voltage scaling settings. We
now investigate the effects of varying the simulated
machine specifications. The following tables summarize
the hardware voltage and frequency settings, where
each column consists of the relative frequency and the
corresponding Processor voltage.

Table 3: Machine 1 Specification

Frequencies (normalized) f; 05 | 075 | 1.0
Voltages(Volts) V; 3 4 5

Table 4: Machine 2 Specification
Frequencies | 0.375|0.5|0.625|0.750.875| 1.0
(normalized) f;

Voltages 25 3| 35| 4 |45 |5
(Volts) V,

Table 5: Machine 3 Specification

Frequencies 05 |0.75 |0.83 (1.0
(normalized) fi

Voltages (Volts) Vi 3 4 45 |5

Table 5: Machine 4 Specification

Frequencies |0.36|0.55|0.64 {0.73]0.82(0.91 (1.0
(norm) f;

Voltages 14 (1.5 (1.6 |17 |18 |19 |20
(Volts) V;

3tasks, C=0.9, idle level 0.0, machine 1

0.8 /tj
e —

Kl
S 06
E —o—FEDF
2 —4— StaticRM
3 04)
g - —s— StaticEDF
w —%— CcEDF
0.2 —e— CCRM
4+ |laEDF
—=— bound
0
0.3 0.4 05 0.6 0.7 0.9

Utilization

Fig. 7. (a) Normalized energy consumption with
machine 1

3 tasks, ¢ = 0.9, idelewel 0.0, mechine 2

08

0.6

/ —o—EDF
—a— StaticRM
04 “/ e

Energy (normalized)

i —— StaticEDF
P e
0.2 —a—CcRM
—+ laEDF
—=— bound
0 -
03 0.4 0.5 0.6 0.7 0.9

Utilization

Fig. 7. (b) Normalized energy consumption with
machine 2

3tasks, ¢ = 0.9, ide level 0.0, mechine 3

08

06 o - —

—o— EDF
04 —a— StaticRM
—x— StaticEDF

—s— CCEDF
—s— CRM
—+— |aEDF
—=— bourd

Energy (normalized)

02

03 04 0.5 0.6 0.7 09
Utilization

Fig. 7. (c) Normalized energy consumption with
machine 3

Figure 7 shows the simulation results for
machines 1, 2, 3 and 4. The Machine 1 and 4 used
in all of the previous simulations, have frequency
settings that can be expected on a standard PC
motherboard, although the corresponding voltage levels
were arbitrarily selected.

Machine 3 differs from Machine 1 in that it has
the additional frequency setting, 0.83. With this small
change, we expect only slight differences in the
simulation results with these specifications. The most
significant change is seen with cycle-conserving EDF
(and Statically-scaled EDF, since the two are identical
here). With the extra operating point in the region near
the cross-over point between ccEDF and ccRM, the
ccEDF algorithm benefits by shifting the cross-over
point closer to full utilization.

As it has many more settings to select from the
plotted curves tend to be smoother. Also, since the
relative voltage range is smaller with this specification

3tasks, c = 0.9, idle level 0.0, mechine 4
—o—EDF
—a— StaticRM

—=— StaticEDF
—w=— CCEDF

e
™

e
o

o
S

Energy (nomalized)

e
]

—ea— cCRM
—+— laEDF
—=— bound

03 0.4 0.5 0.6 0.7 0.9
Utilization

Fig. 7. (d) Normalized energy consumption with
machine 4

the maximum savings is not as good as with the other
two machine specifications. More significant is the fact
that the cycle-conserving EDF outperforms the
look-ahead EDF algorithm. The ccEDF and staticEDF
benefit from the large number of settings, since this
allows them to more closely match the task set and
reduce energy expenditure.

With fewer settings, the frequency selected would
be somewhat higher, so less processing is deferred,
lessening the likelihood of needing higher voltage and
frequency settings later thus improving performance. In
a sense, the error due to a limited number of frequency
steps is detrimental in the ccEDF scheme, but
beneficial with [aEDF. These results, therefore, indicate
that the energy savings from the various RT-DVS
algorithms depend greatly on the available voltage and
frequency settings of the platform.

74 National Journal on Electronic Sciences and Systems, Vol. 2 No. 2 October 2011

B. Varying computation time

In this set of experiments, we vary the distribution
of the actual computation required by the tasks during
each invocation to see how well the RT-DVS
mechanisms take advantage of task sets that do not
consume their worst-case computation times. In the
preceding simulations, we assumed that the tasks
always require their worst-case computation allocation.
Figure 8a-c shows simulation results for tasks that
require a constant 90%, 70%, and 50% of their
worst-case execution cycles for each invocation. We
observe that the statically-scaled mechanisms are not
affected, since they scale voltage and frequency based
solely on the worst-case computation times specified
for the tasks. The results for the cycle-conserving RM
algorithm do not show significant change, indicating that
it does not do a very good job of adapting to tasks
that use less than their specified worst-case
computation times. On the other hand, both the
cycle-conserving and look-ahead EDF schemes show

Energy (normalized)

1 3 tasks, c = 0.7, idle level 0.0, mechine 1
—O0——0—0-

=
o

o
o

/‘{EDF

—a— StaticRM
—x— StaticEDF
—=— CcEDF

o
=

e
[

—e— CCRM
—+— laEDF
—=— bound

03 04 0.5 0.6 07 1.0
Utilization

Fig. 8. (b) Normalized Energy consumption with
computation set to fixed fraction of worst-case
allocation ¢=0.7

3 tasks, ¢ = 0.5, idle level 0.0, mechine 1

—o—EDF
—a— StaticRM
—»— StaticEDF
—%— CcEDF
—e—CCRM

—+— laEDF /’J
——— bound ; : ¥ f A

=3
>»

great reductions in relative energy consumption as the
actual computation performed decreases.

Energy (normalized)
(=]
S

e
]

3tasks, ¢ = 0.9, idelewel 0.0, mechine 1
1

0
// 03 04 0.5 08 0.7 1.0
08 . | Utilization

Fig. 8. (B) Normalized Energy consumption with
computation set to fixed fraction of worst-case

06

Energy (normalized)

—o—EOF :
04 > 4 StaticRM allocation ¢=0.5
—x— StaticEDF . .
e ccEDF For the dynamic mechanisms the average
* e utilization that determines relative energy consumption
5

. —— bound while in the static scaling methods the worst-case

o3 o4 L. o7 1 utilization is the determining factor. The exception is

the ccRM algorithm which albeit dynamic, has results

that primarily reflect the worst-case utilization of the
task set.

Fig. 8. (a) Normalized Energy consumption with
computation set to fixed fraction of worst-case
allocation ¢=0.9

1 3 tasks, ¢ = 0.0, idle level 0.0, mechine 1

Figure 9 shows the simulation results using tasks
with a uniform distribution between 0 and their

N

worst-case computation. Despite the randomness ?

introduced, the results appear identical to setting & //+§m
5 04 —a— StaticRM

computation to a constant one half of the specified g’ — StaticEDF

—x— CCEDF
—a— CCRM

value for each invocation of a task. This makes sense,

since the average execution with the uniform e
distribution is 0.5 times the worst-case for each task. 03 04 05 . 08 07 10
From this, it seems that the actual distribution of

computation per invocation is not the critical factor for
energy conservation performance.

o
)

Fig. 9. Normalized Energy consumption with uniform
distribution for computation

75 National Journal on Electronic Sciences and Systems, Vol. 2 No. 2 October 2011

ll. CONCLUSION & FUTUREWORK

We also discussed in details about designing of
SimDVS, a unified simulation environment for evaluating
dynamic voltage scaling (DVS) algorithms. At present it
evaluates two static RT-DVS algorithms and three
dynamic RT-DVS algorithms. All RT-DVS algorithm’s task
execution module differs with each other. The SimDVS
has been designed such a way that any new DVS
algorithm can be evaluated easily by adding new task
execution module to SImDVS. It also supports to add new
machines specifications to in it.

In the future, we would like to expand this work
for aperiodic task set with varying deadlines. These
algorithms will be implemented in portable devices to
measure the important parameters which are all
assumed to negligible during simulation, like switching
overheads and computations overheads needed for
voltage scaling. We wil investigate DVS with
probabilistic or statistical deadline guarantees. We will
also explore integration with other energy conserving
mechanisms, including application energy adaptation
and energy-adaptive communication (both real-time and
best-effort). Additionally, although developed for
portable devices, RT-DVS is applicable widely in
general real-time systems. The energy savings works
well for extending battery life in portable applications,
but can also reduce the heat generated by the real-time
embedded Controllers in various factory or home
automation products or even reduce cooling
requirements and costs in large- scale multiprocessor
supercomputers.

REFERENCES

[11 M. Fleischmann, (2008) Crusoe Power Management:
Reducing the Operating Power with LongRun. In Proc.
of Hot Chips 12 Symposium.

[2] Advanced Micro Devices, Inc., (2010) AMD PowerNow
Technology.

[3] Intel, Inc., (2008) the Intel(R)
Microarchitecture Technical Summary.

[4] F. Yao, A. Demers and S. Shenke, (1995) A
Scheduling Model for Reduced CPU Energy. In Proc.
of 36th Annual Symposium on Foundations of
Computer Science, pages 374-382.

[5] I. Hong, G. Qu, M. Potkonjak and M.B. Srivastava,
(1998) Synthesis Techniques for Low-Power Hard
Real-Time Systems on Variable Voltage Processor. In

XScale (TM)

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Proc. Of Real-Time Systems Symposium, pages
178-187.

T. Ishihara and H. Yasuura, (1998) Voltage Scheduling
Problem for Dynamically Variable Voltage Processors.
In Proc. of International Symposium On Low Power
Electronics and Design, pages 197-202.

Shin, K. Choi and T. Sakurai, (2010) Power
Optimization of Real-Time Embedded Systems on
Variable Speed Processors. In Proc. of International
Conference on Computer-Aided Design, pages
365-368.

H. Aydin, R. Melhem, D. Mosse and P.M. Alvarez,
(2001) Dynamic and Aggressive Scheduling
Techniques for Power-Aware Real-Time Systems. In
Proc. of Real-Time Systems Symposium.

P. Pillai and K.G. Shin, (2011) Real-Time Dynamic
Voltage Scaling for Low-Power Embedded Operating
Systems. In Proc. of 13th ACM Symposium on
Operating Systems Principles (SOSP’01).

D. Shin, W. Kim, J Jeon, J Kim and S.L. Min, (2002)
SimDVS: An Integrated Simulation Environment for
Performance Evaluation of DVS algorithms.

G. Quan and X. Hu, (2011) Energy Efficient
Fixed-Priority Scheduling for Real-Time Systems on
Variable Voltage Processors. In Proc. of Design
Automation Conference, pages 828-833.

D. Shin, J. Kim and S. Lee, (2009) Intra-Task Voltage
Scheduling for Low-Energy Hard Real-Time
Applications. |IEEE Design and Test of Computers,
18(23):20-30.

F. Gruian (2001) Hard Real-Time Scheduling Using
Stochastic Data and DVS Processors. In Proc. of
International Symposium on Low Power Electronics
and Design, pages 46-51.

W. Kim, J. Kim and S.L. Min, (2010) A Dynamic
Voltage Scaling Algorithm for Dynamic-Priority Hard
Real-Time Systems Using Slack Time Analysis. To
appear in Proc. of Design, Automation and Test in
Europe (DATE'Oce).

J. Lehoczky, L. Sha and Ding, (1989) The Rate
Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. In Proc.
of Real-Time Systems Symposium, pages 166-171.
T. Burd, T. Pering, A. Stratakos and R. Brodersen,
(2000) A Dynamic Voltage Scaled Microprocessor
System. In Proc. of International Solid-State Circuits
Conference, pages 294-295.

D. Shin, W. Kim, J Jeon, J Kim and S. L. Min, (2010)
SimDVS: An Integrated Simulation Environment for
Performance Evaluation of DVS algorithms.

