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ABSTRACT

Reversible circuits avoids energy loss. Hence such circuits have significant potential in futuristic technologies such as
ultra low power VLSI circuits, quantum computing, optical information processing, bioinformatics, and nanotechnology. In
this paper, a reversible design of a single precision floating point multiplier is proposed. 24 x 24 bit multiplier is required
to multiply the significand of the floating point numbers. This multiplier is constructed using operand decomposition
approach. Minimization of quantum cost and garbage output is considered as optimization criteria. Quantum cost of a
reversible gate represents its computational complexity. Garbage outputs are unutilized outputs that are not used as
primary outputs and which cannot be used as inputs for new computation. The reversible partial product generation
circuitry, the reversible half adder and full adder and reversible 4:2 compressor for use in the compression tree, the
reversible conditional right-shifter for normalization of the product are carefully designed and comparison with earlier

designs shows the improvement in quantum cost and garbage output.

Index Terms: Floating point number, Reversible logic, Reversible multiplier, Nanotechnology, Operand decomposition.

I. INTRODUCTION

When a computational system erases a bit of
information, it must dissipate kTIn2 energy, where k is
Boltzmann’s constant and T is the temperature. For T
= 300 Kelvin (room temperature), this is about
29x10 —21 joules. As we employ increasingly
advanced techniques to design our integrated circuits,
the energy dissipation per logic operation has
continually been falling. If we are to continue the
revolution in computer hardware performance, we must
compute with better energy-efficiency methods that can
beat the T barrier.

By building computers that perform reversible
logic operations, arbitrarily low levels of heat dissipation
can be achieved. Reversible computing performs
computation in such a way that any previous state of
the computation can always be reconstructed given a
description of the current state. When we begin to
consider computers constructed from very tiny and fast
logic gates, as in hanocomputing, reversibility becomes
an essential feature for keeping energy dissipation at
tolerable levels.

Floating point arithmetic is useful in applications
where a large dynamic range is required or in rapid
prototyping applications where the required number
range has not been thoroughly investigated. Floating
point multiplication is one of the major operations in

image processing, digital filters, and digital signal
processing applications. This paper proposes a
reversible design [1] for multiplication of single precision
floating point numbers.

The remainder of the paper is organized as
follows: The various related works in reversible
computing are summarized in Section 2; Section 3
provides an introduction to reversible logic; Section 4
provides an introduction to floating point representation
system and floating point multiplication; Section 5
discusses the architecture and components of the
floating point multiplier designed in this work; Section
6 presents the simulation results; Section 7 gives the
conclusion and future work.

IIl. RELATED WORK

Early computer researchers were interested in the
physical limits of computing operations. This chapter
considers research into the physical limits of energy
dissipation during computation, how this research led
to consideration of reversible computing systems.

Landauer, R. [2] showed that there is a minimum
heat generation involved in computation, independent
of the rate of the process. He defines a device to be
logically irreversible, if the output of the device does
not uniquely define the inputs. He labels a machine as
being logically reversible, if and only if all its individual
steps are logically reversible. He has demonstrated that
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every bit of information loss generates kTIn2 joules of
heat energy.

Bennett, C.H. [3] has shown that, the usual
general-purpose computing machines may be made
logically reversible at every step, while retaining their
simplicity and their ability to do general computations.

Toffoli, T. [4] presented a general conceptual
model of computation, which bridges the gap between
the irreversibility of the desired abstract computing task
and the reversibility of a given underlying mechanism
in an explicit way within the model itself.

The central result of the paper is that it is ideally
possible to build sequential circuits with zero internal
power dissipation. Even when these circuits are
interfaced with conventional ones, power dissipation at
the interface would be at most proportional to the
number of input/output lines, rather than to the number
logic gates as in conventional computers. This paper
provides the foundations for the theory of reversible
computing. It concludes that, the choice to use
reversible  mechanism in  describing  computing
processes is a viable one.

The paper by Fredkin, E. and Toffoli, T. [5] deals
with “conservative logic”, a new mathematical model of
computation which explicitly reflects in its axioms
certain fundamental principles of physics, such as the
reversibility of the dynamical laws and the conservation
of certain additive quantities. The line of approach
offered by conservative logic shows that it is ideally
possible to build sequential circuits with zero internal
power dissipation.

Feynman, R. [6] presented a Hamiltonian for a
system of interacting parts, which will behave in the
same way as a large system in serving as a universal
computer. The sources of imperfections of the machine
are also discussed. The Hamiltonian describes in detail
all the internal computing actions, but not those
interactions with the exterior involved in entering the
input and reading the output.

Thapliyal, H. and Srinivas, M.B. [7] utilize a new
4 * 4 reversible gate called TSG gate in this paper to
build the components of a primitive reversible/quantum
ALU. The most significant aspect of the TSG gate is
that it can work singly as a reversible full adder, that
is reversible full adder can now be implemented with
a single gate only. A Novel reversible 4:2 compressor

is also designed from the TSG gate which is later used
to design a novel 8 x 8 reversible Wallace tree
multiplier.

Thapliyal, H. and Ranganathan, N. [8] present
novel designs of reversible sequential circuits that are
optimized in terms of quantum cost, delay and the
garbage outputs. The optimized designs of several
reversible sequential circuits are presented.

ll. BACKGROUND

Reversible computation can be performed through
circuits that do not lose information and are reversible
in nature. Reversible circuits are designed using
reversible gates which are logic gates that can
generate unique output vector from each input vector,
and vice versa.

Reversible logic has received significant and
considerable interest in quantum computation because
time evolution of a closed quantum mechanical system
is inherently reversible. It has applications in low power
CMOS design, optical information processing, DNA
computing, bioinformatics, quantum computing and
nanotechnology.

A. Reversible Gate

A Reversible gate is a k-input, k-output circuit (k
x k) that produces a unique output pattern for each
possible input pattern. There is a one to one
correspondence between the vector of inputs and
outputs.

Thus, an NXN reversible gate can be represented
as

W=(l, b, b, ... Iy (1)
Ov= (04, 05, Oj, ... Oy (2)

Where Iv and Ov represent the input and output
vectors respectively.

Classical logic gates are irreversible since input
vector states cannot be uniquely reconstructed from the
output vector states. There is a number of existing
reversible gates such as Fredkin gate, Toffoli Gate, etc.

B.  Quantum Cost

Each reversible gate has a cost associated with
it called the quantum cost. The quantum cost of a
reversible gate is the number of 1 x 1 and 2 x 2
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reversible gates or quantum logic gates required in its
design. The quantum costs of all reversible 1 x 1 and
2 X 2 gates are taken as unity.

C. Garbage Outputs

Garbage outputs are the outputs of the reversible
circuit that serve no useful function except to preserve
its reversibility.

Given n Boolean inputs, any multiple output
Boolean function on such n Boolean inputs must have
exactly n Boolean outputs so that it is reversible. But
most Boolean functions have lesser number of outputs
than inputs. Hence, additional outputs are added to the
circuit in order to get an n x n reversible function.

D. Feynman Gate

A P=A

Q=A®B

Fig. 1. Feynman Gate

The Feynman gate [6] is a 2-input 2-output
reversible gate. It is also known as controlled-not gate
(CNOT). It can be represented as:

lv=(A, B) (3)
Ov=(P=A Q=A® B (4)

Where A, B are the inputs and P, Q are the
outputs, respectively. It has a quantum cost of 1. Fig.
1 shows the quantum representation of the gate. It can
be used for copying the signal, generating the
complement of a signal, etc.

E. Toffoli Gate

HI 4

Fig. 2. Toffoli Gate

A Toffoli gate [4] is a 3 x 3 two-through
reversible gate as shown in Fig. 2. Two-through means
two of its outputs are the same as inputs. It can be
represented as:

Ilv= (A B, 0) (5)
OV=(P=A Q=B R=AeB® B R=AB® C) (p)

Where A, B, C are inputs and P, Q, R are
outputs, respectively. Toffoli gate also known as
controlled controlled-NOT (CCNOT). It has quantum
cost of 5.

F. Peres Gate

A

P=A

T |
— Q=A®B

[VIR=AB®C

Fig. 3. Peres Gate

A Peres gate [9] is a 3 inputs-3 outputs (3 x
3) reversible gate. It is also known as New Toffoli gate
(NTG), constructed by one Toffoli and one Feynman
gate. It can be represented as:

Iv=(A, B, 0) (7)
Ov=(P=A Q=A®B R=AeB® () (8)

Where A, B, C are inputs and P, Q, R are
outputs, respectively. Fig. 3 shows the quantum
implementation of the Peres gate with quantum cost
of 4.

G. Fredkin Gate

A—@-—F— P=A
Lo

B = i Q=AB+AC

c—b+—d R=AB+A.C

Fig. 4 Fredkin Gate
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A Fredkin gate [5] is a (3 x 3) conservative
reversible gate, also known as controlled permutation
gate. It can be represented as:

/V= (A, B’ C) (9)
Ov=(P=A Q=AeB+AeC R=AeB+As (). (10)

Where A, B, C are inputs and P, Q, R are
outputs, respectively. Fig. 4 shows its quantum
implementation with quantum cost of 4.

H.  HNG Gate

A HNG gate [10, 11] is a 4 inputs- 4 outputs
(4x4) reversible gate. It can be represented as:

lv=(A B, C,D) (11)
Qv=(P=A Q=B R=A®B®, (12)
S=(A®@ B eC®AeB...D)

Where A, B, C are inputs and P, Q, R are
outputs, respectively.

R=A®B®C

S=(A®B).CO®ABOD

Fig. 5. HNG Gate

Fig. 5 shows the quantum implementation of the
HNG gate. It has a quantum cost of 6.

IV. FLOATING-POINT MULTIPLICATION

A.  Floating-Point Number

The floating-point representation system is a radix
numeration system in which the location of the radix
point is indicated by an exponent of the radix. The
precision of the number is independent of its
magnitude. Hence, there is no fixed number of digits
before and after the radix point, i.e., the radix point
“floats”. Floating-point numbers whose radix equals 2
are called Binary Floating-point Numbers.

|[EEE binary normal floating-point numbers are
represented as a product of three components in the
following form [12]:

(15 x (1+ 27 x T) x 2£bas
Where,

e Sis sign
e E is biased exponent
e T is trailing significand
B. Single Precision Floating-Point Format

The IEEE floating-point standard defines a 32 bit
floating-point format officially referred to as binary 32.
It is commonly called Single precision Floating-Point
Format.

Single precision format is characterized by
precision of 24 bits and an exponent range from — 126
to + 127. A bias of value 127 is used to obtain a
biased exponent range from 1 to 255. Representation
of the single precision format is shown in Fig. 6.

The three fields representing the number are:
e 1-Bit Sign, S

e 8-Bit Biased Exponent, E

e 23-Bits Trailing Significand, T

8 23
S E T

Fig. 6. Representation of number

The value of the single precision number is given
by the product of the function of the three components
as shown below:

(-1)S X (1+ 2% « T) x 27

C. Multiplication

Multiplication of two floating point numbers
involves pair-wise multiplication of the three factors S,
E, T of the two numbers.

Given two normal single precision floating point
numbers, X and Y, defined as:

X=(-1) SX x (1+ 7% % Ty x 2 EX'727

Y=(1)5 x (1+28 xT1) x 25
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The product of the two floating point numbers is
expressed as pair-wise multiplication of their respective
components:

{XY}={(-1)51655,}x
{A+278x Ty +2 ®xT))
x {2 +E, %)

V. ARCHITECTURE

Multiplication of floating point numbers involves
pair-wise multiplication of the sign, exponent, and
significand of the multiplicand and multipliers. The
computations involved are:

e Sign-bit computation

e Significand multiplication

e Exponent computation

e Normalization of product

1 8 X 23 1 8 Y 23
2 s - - —
1|
N
REVERSIBLE CARRY REXE%?:SHE
PROPAGATE ADDER RN
REVERSIBLE SIGN | s ; "
CONTROLLER UNIT
REVERSIBLE CARRY | Ms8| [ REVERSIBLE
PROPAGATE ADDER NORMALIZATION
UNIT
F LW
23
[s E T T |
XY

Fig. 7. Single Precision Floating Point Format

The overall structure of the reversible floating
point multiplier is shown in Fig. 7. The major
components of the design are:

e Reversible sign controller unit
e Reversible partition multiplier
e Reversible carry propagate adder
e Reversible normalization unit

The components are designed using reversible
gates to minimize power consumption. Each part of the
design is optimized in terms of quantum cost and
garbage outputs.

A. Reversible Sign Controller Unit

sx— SIGN | —G
CONTROLLER
Sy—|  UNIT | —s,y

Fig. 8. Sign controller unit

An exclusive OR function is used to compute the
sign bit of the product. The exclusive OR function is
realized by a single Feynman gate. Hence the sign
controller shown in Fig. 8 has a quantum cost 1 and
the number of garbage output of the sign controller unit
is 1.

B. Reversible Partition Multiplier

The reversible partition multiplier is designed to
perform the multiplication of 24-bit significands of the
single precision floating point numbers [13]. It generates
a 48-bit number which is normalized and rounded by
the reversible normalization unit to obtain the trailing
significand field of the product.

It utilizes a technique called operand
decomposition to realize the 24 x 24 bit reversible
partition multiplier [14]. 24 bit numbers, A and B, to be
multiplied are logically partitioned into 3 vectors of 8
bits each.

A is divided as:
o AH = AggAgg
[ ] AM = A15'A8
e AL = A-A,
B is divided as:
[ ] BH = 823'816
L4 BM = B15'BS
[ ] BL = BTBO

Thus the 24 x 24 bit reversible multiplication is
carried out using nine 8 x 8 bit reversible. It generates
nine 16-bit partial products. The 8 x 8 bit reversible
multipliers are designed using Wallace tree structure.
A Wallace tree is an efficient implementation of a digital
circuit that multiplies two integers, primarily used for
fast multiplication. The 16-bit partial products are
logically aligned as shown in Fig. 9 and compressed
using reversible half adders and reversible full adders
to generate the 48-bit product.
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AHBH ALBH ALBL
esessse seeccscene seececcscsscsnsnns
AMBH D CO ssescsss ALBM
AHBM . oje XYY s AMBL
XXX AHBL
AMBMfe reese ]

Fig. 9. Logical Alignment of 16-Bit Partial Products

C. Reversible 8 x 8 Wallace Tree Multiplier

An 8 x 8 bit reversible Wallace tree multiplier
is used as a module in the design of reversible partition
multiplier. Wallace tree multiplication consists of three
conceptual stages:

e Partial product generation
e Partial product compression
e Final summation

The first step of generating all 64 one-bit partial
products is performed in a reversible manner with a
design that utilizes a cascade of Toffoli and Peres
gates. The connection in series reduces garbage
outputs. Fig. 10 illustrates the partial products
generation for multiplication of two 8-bit numbers, X
and Y.

Yo—@@ @ G
Y ] @ G
% L 4 @ G
¥ & @ G
L @ G
" @ ® G
Ys ’ @ G
¥ G
o
o T XoYo
o C) Xo¥y
o) X
0 WL sse L
0 Dy Xo¥s
b= see °
0 Fal XoYy
b A aee
o 1 Xo¥s
o () XoYe
0 o Xo¥r
[ ] [ ]
L ] [ ]
- L]
= 0050000
o (¥ XoYo
1] {} XYy
° 7 X%
[1] C) X7¥3
o () X7¥a
o () X7¥s
o (:} X7¥e
o C} X7¥7

Fig. 10. Partial Product Generation

Partial product compression is done in two
stages. The first stage shown in Fig. 11 uses four
Reversible half adders (1, 9, 10 and 18), four
Reversible full adders (2, 8, 11 and 17), and ten
Reversible 4:2 compressors (3-7, 12-16).

My K Mg Hq X3 Xz Xq Xo
Y7 Yo ¥5 Ya Y3 ¥2 Y1 Yo

1 L3 L3 4 3 2 1
0o 0 0 0 0 s|X‘r.\"o Xo Yo Xs¥o Ka¥oX3¥g X2¥o X1¥o Koo
0 0 0 0 ,X7¥ Xe¥1 Ms¥q Kol Ma¥ KoY X1 Y1 XoYs| O
0 0 0 [X7¥zXs¥2Xs¥z Xa¥z X3¥z X2¥2(X1¥2 Xo¥z
0.0 Xr¥s[Xe¥s Xs¥a Xa¥y XaYa Xey X1 Y3 Xo¥s O
0 47 X7Ya(XeYa KsYa XaYa XaYa )‘ﬂjixd!u Xo¥a
0 u;KTJ'n| Xs¥s |xﬁh! XaY¥s ’(:!.‘l"si Xz¥5 X1Ys Xo¥s O
0 _"'r.'l'jih! X5Yg/XaYs X3¥e Xz¥e X1¥s Xo¥s O 0
X7Y¥7 XeY¥7|Xs¥7 XaY¥7 Xa¥7 X2¥7 X1 ¥7 %o¥7 O O O

© cooco

0
0
1]
0
1]
1]

[-1-K-X-T- -1
cceco oo

cooo
(-1-X-X-]

Fig. 11. Partial Product Compression - First Stage

The second stage uses six Reversible half adders
(19, 20, 28-31),

Table 1
Result of Reversible Partial Product Generation
Quantum | Garbage
Cost Outputs
Existing work [7] 320 64
Proposed design 305 16
Table 2

Result of Reversible Full Adder

Quantum | Garbage
Cost | Outputs
Existing work [7] 13 2
Existing work [15] 8 2
Proposed design 6 2
Table 3

Result of Reversible 4:2 Compressor

Quantum | Garbage
Cost Outputs

Existing work [7] 26 4

Proposed design 12 4
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Table 4
Result of Reversible 8 x 8 Wallace Tree Multiplier
Quantum | Garbage
Cost Outputs
Existing work [7] 113 186
Proposed design 635 106
Table 5
Result of Reversible Single Precision Floating
Point Multiplier
Quantum | Garbage
Cost Outputs
Sign Controller 1 1
24 x 24 6429 1265
Carry Propagate Adder 48 16
Normalization Unit 283 72
Two Reversible full adders (21, 22), and five

Reversible 4:2 compressors (23-27) as shown in Fig.
12.

M aM as a4 a3 a1 @1 3 18
0 X7¥sl[ So|[ Ss| S7| Se| Ss | Sa| S3| Sz| S1 XoYo
3w m m| G| Ca| C7r| Co| Cs| Ca| Ca|| Cz| C1
[X7¥7| S18 | S17| S18 | S15| S1a| S13| S12| 511 | S10 XoYa
|€18// €17 €16/ €15l €1all €13/ €12| €11 ] Cr0

1] L] o

Fig. 12. Partial Product Compression - Second
Stage

The Final summation is shown in Fig. 13. It
consists of two half adders and eleven full adders.

a2[Caa | Cas [ Cao [ Cas| Cas [ €37 Can | Cas| Caa | €33 [Ca2| _mt
|543 S31| S3o|| Sao | Szs| Sz7 | S26| Szs | Sza | S23| S22 [ S21| Sz0| S1s 51 Xodo
| €31 | Can| Cas || Can | Car Czs_l_c:n__ Ca4 €23 | Caz| Ca1 | Cao| 0|s_|

Pis PaPis Po Py PoPo B P, Ps Ps P4 P; P P P
Fig. 13. Final Summation

D. Reversible Normalization Unit

The reversible partition multiplier generates a
48-bit number which is normalized and rounded by the
reversible normalization unit to obtain the trailing
significand field of the product. The Fredkin gate

provides the function of a reversible multiplexer in this
circuit. This circuit also performs round-to-zero rounding
of the significand by discarding the unwanted bits as
garbage outputs.

VI. RESULTS

Each unit of the proposed design is functionally
verified. Also, the quantum cost, delay, and number of
garbage outputs are calculated. Existing designs from
earlier papers are also functionally verified, and
quantum cost and number of garbage outputs
calculated. Table 1 to Table 5 presents the results of
reversible partial product generation unit, reversible full
adder, reversible 4:2 compressor and reversible 8x8
wallace tree multiplier. The results of the major blocks
are presented in Table 5.

VI. CONCLUSION

Reversible logic circuits seek to minimize
information loss and hence offer a promising design
approach for low-power computing. In this work, a
reversible multiplier is designed to multiply single
precision floating point numbers with a criteria to
optimize Quantum cost and Garbage outputs.

The proposed design of Reversible sign controller
unit is functionally verified and its quantum cost and
garbage output found. A design is proposed for an 8x8
Reversible Wallace tree multiplier that is used to
construct the reversible partition multiplier. It is shown
that the proposed design of reversible partial product
generation unit, reversible full adder, reversible 4:2
compressor and reversible 8x8 wallace tree multiplier
are better than their existing designs in terms of
quantum cost and garbage output.

Reversible Partition multiplier is designed using
nine 8x8 reversible Wallace tree multipliers. Reversible
carry propagate adder is designed for computing
Exponent of product. Reversible normalization unit is
designed to normalize the product. The results show
that the proposed design is optimized in terms of
Quantum cost and garbage output.
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