Journal on Intelligent Electronic Systems, Vol.1, No.1, November 2007 15

Verification and Validation for Safety Critical Real Time Computers

D.Thirugnana Murthy ,T.Sridevi, A.Shanmugam and P.Swaminathan
Electronics and Instrumentation Group
Indira Gandhi Centre for Atomic Research
Kalpakkam, Tamilnadu, India E-mail : dtm@igcar.gov.in

Abstract

Assurance of safety of public, occupational workers and protection of the environment are important needs to be met in the
pursuance of activities for economic and social progress. These activities include the establishment and utilization of nuclear
facilities and use of radioactive sources and they have to be carried out in accordance with relevant provisions in the Atomic
Energy act. Increasing use of computer based system necessitated to deploy in Nuclear reactors also. Since inception of
Nuclear power development in the country, maintaining high safety standards has been of prime importance. Although today
computer systems are more matured, but when it comes to use in Safety Critical Systems (SCS) it forces lots of challenges.
These are systems important to safety, provided to assure under anticipated operational occurrences and accident conditions,
the safe shutdown of the Nuclear reactor, the heat removal from the core and containment of any radioactivity. These systems
are called SCS. These systems need to have high reliability and availability. The cost and consequences of critical system
failure are potentially much greater than for non-critical systems. So SCS need an augment normal analysis and testing with
additional processes that are designed to produce evidence that the systems are trustworthy. This paper discusses the aspects
of Verification & Validation procedure to qualify the computer system for SCS. This paper elaborates program inspections,
static& dynamicanalysis and V&V techniques

Key words: Safety critical system, Verification, Validation, Walkthrough, Inspection, Static and dynamic analysis, Formal

verification, Clean room, V&V techniques

[. INTRODUCTION

Verification and Validation (V & V) of the software
systems are checking and analysis processes that ensure
that software conforms to its specification and meets the
needs of the customer. V &V is a whole life cycle process. It
starts with requirement reviews and continues through
design reviews and code inspections to product testing. V
& V procedure for Real Time Computers used for Safety
Critical Systems (SCS) forces lots of challenges. Software
V&V processes “determine whether development
products of a given activity conform to the requirements of
that activity, and whether the software satisfies its intended
use”. This determination may include analysis, evaluation,
review, inspection, assessment, and testing of software
products and processes. V&V processes assess the
software in the context of the system, including the
operational environment, hardware, interfacing software,
operators and users.

Il. SAFETY CRITICAL SYSTEMS

These are systems important to safety, provided to
assure under anticipated operational occurrences and
accident conditions, the safe shutdown of the Nuclear
reactor (Shutdown systems), the heat removal from the
core (Emergency core cooling systems) and containment
of any radioactivity (Containment Isolation Systems) [1].
These systems are called SCS, which plays a principle
role in achievement or maintenance of Nuclear power
plant safety[2]. These systems need to have high reliability
and availability.

ll. VERIFICATION &VALIDATION

Verification is the process of determining whether or
not the product of each phase of computer based systems
development process fulfills all the requirements imposed
by the previous phase. Validation is the process of testing
and evaluating the integrated computer based system
(hardware and software) to ensure the compliance with the
functional, performance and interface requirements.
Demonstration to safety committee for correctness and
safety of the system requires a variety of detailed V &Y
activities.

IV.V &V PLANNING FOR SOFTWARE V&V

Systematic planning is needed to get the most out of
V&V and to control. V & V are required for each stages
produced at the end of the following development
activities[3].

1.Computer system requirements
2.System Architectural design

3.Software requirements

4, Software design

5.Software coding and Implementation
6.Software unittesting

7.Hardware and Software Integrated testing

8.Acceptance Testing both at factory & site.

16 Journal on Intelligent Electronic Systems, Vol.1 , No.1,November 2007

[ErE 3;-7"' Tty m;:i—-{ s ":-“-.}--«__ T
- 4 e] s "L g
i |j il

r = e o
rT T

Fig. 1.V model development

Fig. 1. shows how the test plans are derived from the
system specification and design [4].

V. V&V OF SOFTWARE

The V &V of the software are carried outin all phases of life
cycle.

1.Concept 2.Requirements
3.Design 4. Implementation
5.Test 6.Installation

7.0Operation and maintenance

It is recommended that V&V activities to be planned
based on V&V standards/guides such as IEC 880[5]. The
Software V&V Plan should then be evolved conforming to
the selected standard e.g. [EEE std. 1012.

Software Verification

Verification should be applied to following software
development phases.

Software Requirements Specification (SRS)
Software Design (architectural and detailed design)
Code (Programs)

Number of techniques and tools can be used for
verification. The capabilities of different tools & techniques
for verification differ in terms of aspects they cover. It is
therefore essential to evolve a mix of verification
techniques which will have adequate depth and which will
together ensure widest possible verification coverage.
Some of the techniques that should be considered for
verification are walkthrough and Inspection, program
analysis and formal verification techniques.

Walkthroughs and inspections

A walkthrough is the process of reviewing a
development product manually, by a set of trained people.
i.e somebody literally going through it. It can be formal or
informal. Informal walkthroughs are very useful during the

development activities but is certainly not meant for
approving products, as there is no formal commitment to it
and the goals are not formally defined. Walkthroughs are
made effective, with a formal structure for SCS. The
participants are assigned roles and evaluate the product
being verified from different points of views. The important
goal of a walkthrough is to cover as many errors as
possible.

HEETISLIR)

Fig. 2. Inspection process

Inspections are similar to walkthroughs except that
the initiative comes from the inspection team, which
studies the product and documentation independently for
finding out problems and seeks clarifications from the
designers. Use of checklists can be very effective if check
lists are designed carefully and the responses to check list
are direct, brief and not open to interpretations. The
inspection process adopted for SCS is shown in the fig 2.
The walkthroughs and inspection techniques are applied
to almost all work products of the software development
cycle for SCS.

Program analysis (static & dynamic)

Program analysis techniques fall in to two categories -
Static and Dynamic. In static analysis the programs are
analyzed without executing them. It results in Language,
standard/constraints checking, Control flow analysis, Data
flow analysis, Information flow analysis and Semantic
analysis. This analysis results help to establish
correspondence between programs and the designs to
decode potential problems. These tools can be used to
verify that ‘as-built’ conforms to ‘'as-designed'. For
example call graph of a program can be generated and
compared with the calls, called-by information in software
design document.

Fig. 3. Static and dynamic V &V

Dynamic analysis consists of instrumenting code and
executing test cases to measure the structural coverage
achieved with the test cases. Verification plan should set
coverage targets so that testing can be designed to meet

D.Thirugnana Murthy et al : Verification and Validation for Safety Critical Real Time Computers 17

those targets. Fig. 3. shows the static and dynamic V&V.
Formal verification techniques

Formal techniques are gaining acceptance in V&V
activities. The effort required is high and may be at present
justifiable in safety critical applications only. There are
number of Formal Techniques which can be applied at
different stages of software development. This is basically
mathematical representation. For example software
specifications could be developed using, Z or VDM, so that
it would be possible to prove correctness and
completeness of specifications.

The languages like ESTEREL, PROMELLA or
graphical notations like STATECHARTS enable one to
capture reactive behavior of the software in the 'models of
the software' built using these languages & notations.
These models of software can then be used to verify
rigorously the required properties of the software. This
technique can be used during software specification or
design.

VI. SOFTWARE V&V TECHNIQUES

Software V&V tasks to fulfil the requirements of the
V&V activities generally involve techniques selected from
three major classes: static, dynamic, and formal analysis.

Strategies for choosing techniques

Software V&V techniques used during software
requirements stage are control flow analysis, data flow
analysis, algorithm analysis, and simulation. Control and
data flow analysis is most applicable for real time and data
driven systems. These flow analyses transform logic and
data requirements text into graphic flows which are easier
to analyze than the text. State transition and transaction
diagrams are examples of control flow diagrams.
Algorithm analysis involves re-derivation of equations or
evaluation of the suitability of specific numerical
techniques. Simulation is used to evaluate the interactions
of large, complex systems with many hardware, user, and
other interfacing software units.

V&V techniques used during software design include
algorithm analysis, database analysis, sizing and timing
analysis, and simulation. Algorithm analysis examines the
correctness of the equations, but also examines
truncation and round-off effects, numerical precision of
word storage and variables (e.g., single-vs. extended
precision arithmetic), and data typing influences.
Database analysis is particularly useful for programs that
store program logic in data parameters. A logic analysis of
these data values is required to determine the effect these
parameters have on program control. Sizing and timing
analysis is useful for real-time programs having response

time requirements and constrained memory execution
space requirements.

V&V techniques used during code are control flow
analysis, database analysis, regression analysis, sizing
and timing analysis. For large code developments, control
flow diagrams showing the hierarchy of main routines and
their sub-functions are useful in understanding the flow of
program control. Database analysis is performed on
programs with significant data storage to ensure common
data and variable regions are used consistently between
all call routines. Data integrity is enforced and overflowing
data tables can accidentally overwrite no data or variable.
Data typing and use are consistent throughout all program
elements. Regression analysis is used to revaluate
software requirements and software design issues
whenever any significant code change is made. This
technique ensures project awareness of the original
system requirements. Sizing and timing analysis is done
during incremental code development and compared
against predicted values. Significant deviations between
actual and predicted values are a possible indication of
problems or the need for additional examination.

Another area of concern is the ability of compilers to
generate object code that is functionally equivalent to the
source code, that is, reliance on the correctness of the
language compiler to make data dependent decisions
about abstract programmer coded information. For critical
applications, it is solved by validating the compiler or by
validating that the object code produced by the compiler is
functionally equivalent to the source.

Code reading is another technique that may be used
for source code verification. An expert reads through
another programmer's code to detect errors. Reverse
Engineering tools are used to Re-build source code from
object code which in-turnin verified.

A comprehensive test management approach to
recognize the differences in strategies and in objectives for
unit, software integration, and software system test. Unit
test verifies the design and implementation of software
units. Software integration test verifies functional
requirements as the software units are integrated. Special
attention is focused on software, hardware, and operator
interfaces. Software system test validates the entire
software program against system requirements and
software performance objectives. Software system tests
validate that the software executes correctly within its
stated operating environment. The software ability to
handle with anomalies and stress conditions is
emphasized. These tests are not intended to duplicate or
replace the user and development groups test
responsibilities, but instead supplement the development

18 Journal on Intelligent Electronic Systems, Vol.1, No.1, November 2007

testing to test behavior not normally tested by the user or
developer.

Functional test cases execute part or all of the
system to validate that the user requirement is satisfied;
these test cases cannot always detect internal errors that
will occur under special circumstances. Another software
V&YV test technique is to develop test cases that violate
software requirements. This approach is effective at
uncovering basic design assumption errors and unusual
operational use errors. The process of planning functional
test cases requires a thorough examination of the
functional requirements. An analyst who carefully
develops those test cases is likely to detect errors and
omissions in the software requirements. In this sense test
planning can be effective in detecting errors and can
contribute to uncovering some errors before test
execution.

Descriptions of techniques

The following are summary descriptions of the
commonly used V&V techniques.

Algorithm analysis examines the logic and accuracy
of the software requirements by translating algorithms
into some language or structured format. The analysis
involves re-deriving equations or evaluating the suitability
of specific numerical techniques. It checks that algorithms
are correct, appropriate, stable, and meet all accuracy,
timing, and sizing.

Analytic modelling provides performance evaluation
and capacity planning information on software design. It
represents the program logic and processing of some
kind of model and analyzes it for sufficiency.

Boundary value analysis involves tests which cover
the boundaries and extremes of the function. The value
zero, whether used directly or indirectly, should be used
with special attention (e.g., division by zero, null matrix,
zero table entry). It should also be designed to force the
output to its extreme values. If the output is a sequence of
data, special attention should be given to the first and last
elements and to lists containing zero, one, and two
elements.

Code reading involves expert reading through
another programmer's code to detect errors. The
individual is likely to perform a pseudo-execution
(mentally) of the code to pick up errors before compilation.

Coverage analysis shows how much of the structure
of unit system has been exercised by a given set of tests.
System level coverage measures how many of the unit
parts of the system have been called by a test set. Code
coverage measures the percentage of statements,

branches, orlines of code exercised by atest set.

Critical timing/flow analysis checks that the process
and control timing requirements are satisfied by modelling
those aspects of the software design.

Database analysis ensures that the database
structure and access methods are compatible with the
logical design. The data integrity is enforced and no data or
variable can be accidentally overwritten by overflowing
data tables and that data typing and use are consistent
throughout the program..

Data flow analysis is important for designing the high
level (process) architecture of applications. It can check for
variables that are read before they are written, written
more than once without being read, and written but never
read.

Desk checking involves the examination of the
software design or code by an individual, usually an expert
other than the author, for obvious errors. It can include
looking over the code for obvious defects, checking for
correct procedure interfaces, reading the comments to
develop a sense of what the code does and then
comparing it to its external specifications, comparing
comments to software design documentation, stepping
through with input conditions contrived to "exercise" all
paths including those not directly related to the external
specifications, and checking for compliance with
programming standards and conventions.

Error inserting (seeding) involves inserting known
error types into the program and executing it with the test
cases. If only some of the seeded errors are found, the test
case set is not adequate. The ratio of found seeded errors
to the total number of seeded errors is an estimation of the
ratio of found real errors to total number of errors, or
Seeded Errors Found / Seeded Errors = Real Errors Found
|/ Total Real Errors. Then, one can estimate the number of
errors remaining by subtracting the number of real errors
found from the total number of real errors. If all the seeded
errors are found, it indicates that either the test case set is
adequate, or that the seeded errors were too easy to find.

Functional testing executes part or all of the system to
validate that the user requirement is satisfied. Interface
analysis is a static analysis technique. It is used to
demonstrate that the interfaces of sub programs do not
contain any errors that lead to failures in a particular
application of the software. The types of interfaces that are
analyzed include external, internal, hardware / hardware,
software / software, software / hardware, and software /
database. Interface testing is a dynamic analysis
technique. Similar to interface analysis, except test cases
are built with data that tests all interfaces.

D.Thirugnana Murthy et al : Verification and Validation for Safety Critical Real Time Computers 19

Performance testing measures how well the software
system executes according to its required response times,
processor usage, and other quantified features in
operation.

Prototyping helps to examine the probable results of
implementing software requirements. Examination of a
prototype may help to identify incomplete or incorrect
software requirements and may also reveal if any software
requirements will not resultin desired system behavior.

Regression analysis and testing is used to re-
evaluate software requirements and software design
issues whenever any significant code change is made. It
involves re-testing to verify that the modified software still
meets its specified requirements. This analysis ensures
awareness of the original system requirements. It is
performed when any changes to the product are made
during installation to verify that the basic software
requirements and software design assumptions affecting
other areas of the program have not been violated.

Requirements parsing involves examination to
ensure that each software requirement is defined
unambiguously by a complete set of attributes.

Reviews are meetings at which the software
requirements, software design, code, or other products
are presented to the user, sponsor, or other interested
parties for comment and approval, often as a prerequisite
for concluding a given activity of the software development
process. Reviews check the adequacy of the software
requirements and software design according to a set of
criteriaand procedures.

Simulation is used to evaluate the interactions of
large, complex systems with many hardware, user, and
other interfacing software units. Simulation uses an
executable model to examine the behaviour of the
software. Simulation is used to test operator procedures
andtoisolate installation problems.

Sizing and timing analysis is useful for determining
that allocations for hardware and software are made
appropriately for the software design architecture. It is
performed during incremental code development by
obtaining program sizing and execution timing values to
determine if the program will satisfy processor size and
performance requirements allocated to the software.

Stress testing tests the response of the system to
extreme conditions to identify vulnerable points within the
software, and to show that the system can withstand
normal workloads.

Structural testing examines the logic of the units and
may be used to support software requirements for test

coverage, i.e., how much of the program has been
executed.

Test certification ensures that reported test results
are the actual finding of the tests. Test related tools, media,
and documentation are certified to ensure maintainability
and repeatability of tests. This technique is also used to
show that the delivered software product is identical to the
software product that was subjected to V&. It is used,
particularly in critical software systems, to verify that the
required tests have been executed and that the delivered
software product is identical to the product subjected to
software V&V.

Techniques used during thelifecycle

Criteria for a selection of techniques for any
document include the amount of information available on
them, their citation in standards and guidelines. The table
1. provides a mapping of the error detection techniques to
software lifecycle phases.

Coding phase

Use of static analysis techniques helps to ensure that
the implementation phase products (e.g., code and
related documentation) are of the proper form. Static
analysis involves checking that the system adheres to
coding and documentation standards or conventions, and
data types are correct. This analysis can be performed
either manually or with automated tools. One category of
static analysis techniques performed on code is
complexity analysis. Complexity analysis measures the
complexity of code based on specific measurements.

In-house developed “Static Analyser” of “C”
programs is used to evaluate the quality attributes of the
Code without executing. The following are the quailty
attributes reported by the Static Analyser[6]

1.Comment to Code Ratio
2. Cyclomatic Complexity
3. “Goto” statement

4 Ternary Operator
5.Nesting Level

6. Dynamic Memory
7.Unused Functions
8.Assembly Code

9. Unused Variables

10. Un-initialsed variables

Robustness testing: The software is tested against
inputs that fall outside the range of expected inputs to

20 Journal on Intelligent Electronic Systems, Vol.1, No.1, November 2007

make sure that the program can handle unexpected. If the
program is expected to handle input streams arriving at
unpredictable times, test the program for inputs arriving
faster than planned. The purpose of this type of testing is
to avoid catastrophic failure when most needed. The
software is also tested for reversal of input signal and
spikes / noise in the input signal.

Statistical testing: The program is run for many
thousands of randomly selected inputs in order to derive a
program reliability value. If any failure is detected during
statistical testing, the program should be repaired. The
most useful aspect of random testing is to locate failures
could not be found during the other forms of testing.

VII. REVIEW TECHNIQUES

Many review techniques exist for V&V of software
systems. The V&V Plan should specify the techniques to
be used, and the time within the software development life
cycle when the various techniques will be applied. These
techniques include various forms of analysis, formal &
informal reviews, product & process assessments and
software testing.

VIIl. PROCEDURES

Procedures require a description of the software
review and testing strategy. The plan should describe the
management of the software V&V activities. It should
specify the V&V tasks, which will be carried out, including
the planning assumptions for each task. It should establish
the procedures and methods by which each V&V task will
be performed, including the activities required to evaluate
each software design output and each development
activity in order to demonstrate that the system and
software requirements have been met. It should establish
procedures to ensure that systems in which errors are
detected are appropriately analyzed, reported, corrected
and reassessed. Anomaly reports should be generated
and disseminated. The plan should describe V&Y
reporting requirements. This includes review
documentation requirements, evaluation criteria, error
reporting, and anomaly resolution procedures.

[X. CLEAN ROOM SOFTWARE DEVELOPMENT

a{:’.ﬁ?.\ Irireze

'“"”'/1

L T

o el |:{_,rfm1|_’,\ '“_"‘_ 3

Kok Ly,

Kﬂ"h

.|-\.-|.|i--y

iwik: 1

i

Fig 4. The clean room process

The name is derived from the semiconductor
fabrication. The philosophy is defect avoidance by

mathematical approach rather than defect removal as
shown in fig 4. Software development process is based on
incremental development, Formal specification, Static
verification using correctness arguments, Statistical
testing to determine reliability.

Cleanroom process teams

Three teams involved when the clean room process is
used forlarge system development.

Specification team:Responsible for developing and
maintaining the system specification

Development team:Responsible for developing and
verifying the software. The software is NOT executed or
even compiled during this process

Certification team:Responsible for developing a set of
statistical tests to exercise the software after development.
Reliability growth models used to determine the reliability.

X. SOFTWARE QUALITY ASSURANCE (SQA)

The SQA activities arise due to need to enforce
conformance to selected standard and procedures in a
given project. Therefore it is necessary for the software
developer to identify governing standards and procedures
for all software development activities and deliverables
(including documentation) and then evolve a QA plan to
ensure compliance[7]. The plan should address,
Identification of all governing standards and procedures,
Identification of authority for review and approval of each
deliverable, Procedures for reporting and correcting non-
conformances to standards and procedures, Identification
of development, verification & configuration management
plan., List of all the audits to be performed, Organizational
structure and reporting lines for QAteams

The SQA plan should be available prior to start of the
software development activities. A SQA Plan should be
evolved based on an appropriate standard.

XI. CONCLUSION

V &V for Safety critical systems are discussed by which
the high availability and reliability requirement is achieved.
Verification and validation should establish confidence that
the software is fit for purpose. This doesn't mean completely
free of defects. Rather, it must be good enough for its
intended use and the type of use will determine the degree of
confidence that is needed and is the step towards Zero
Deftect Programming. V&V process should be extended
during operation & maintenance phase of Real Time
Computer Systems. For any change in the requirement in
O&M phase, impact analysis shall be carried out. The
modified software shall be tested & verified in representative
system before porting to target system.

D.Thirugnana Murthy et al : Verification and Validation for Safety Critical Real Time Computers 21

Table 1. Error detection and related techniques

Technigues Ray. Dasign Cuding Tuasl Code Pl aainnlizn
TR

Algorithrm analysis ~ W o o | ..-

Boundary value analysis w |

Conircl flow analysis et bl » v

Databaze anakbysiz - w S - | I

Data Aow analysis o~ w " | -

Data flow diagrams ~

Desk checking {code reading) ot

Error sesding -

Formal methods - -

Inspections b b -

Interface analy=sis 4 o o

Interface te;sti'ng w

Barformance téé‘]ng w

Protobyping - e -

Regreszsion analvsis and testing o kg w ' ' o

Rayguirarmarils parsing =

Raviews ' w - - - w -

Simulation - - - - - -

Zizing and timing analysis ' o ' o

Blrass lasling -

Tracing (raceability analys =) -~ [- '

WalkUiroughs | =~ - e - = -
ACKNOWLEDGEMENT

The authors thank members of Electronics and [4]. Sommerville, 1., 2001, Software Engineering,

Instrumentation Division of Indira Gandhi Centre for
Atomic Research, Kalpakkam for their constant
encouragementinV&V.

[1].

2]

3],

REFERRENCES

Design safety guide on computer based systems,
Atomic Energy Regulatory Board /SG-D25

Software reliability and safety in Nuclear reactor
protection systems by J. Dennis Lawrence for U.S
Nuclear regulatory commission. UCRL-ID-114839

Pressman, R.S., 2001, Software Engineering,
McGraw Hill, 5"Ed.,

[5].

[6].

[7].

Pearson Education, 6"Ed.,

IEC 880, 1986, 'Software for computers in the Safety
Systems of Nuclear Power Stations'. [EC

T. Sridevi, A. Shanmugam, D. Thirugnana Murthy,
S. llango Sambasivan and P.Swaminathan, March
2007, Static Analyzer for Computer Based Safety
Systems Journal of the Instrument Society of India
(ISOI), India 37(1) 40-48.

Watts S.Humphery, Managing the software process.
SEl series in software Engineering.

