
Abstract

Key words:

Floating point (FP) representation is commonly used to represent real numbers. Some papers have suggested the use of
logarithmic number system (LNS) in addition to floating point. In LNS, a real number is represented as a fixed point
logarithm. Therefore multiplication and division in LNS are much simpler in comparison to that in FP, so the LNS can be
beneficial if addition and subtraction can be performed with speed and accuracy equal to FP. LNS addition and subtraction
requires interpolation technique for which some vales are stored in read only memory (ROM). In this paper, different
sizes of ROM are used for addition and subtraction and their performances are compared to the floating point.

FPGA, Logarithmic Number Systems, ROM.

IMPLEMENTATION OF FLOATING POINT AND
LOGARITHMIC NUMBER SYSTEM ARITHMETIC UNIT AND

THEIR COMPARISON FOR FPGA

1 2 3
Amit Kumar , Saxena .A.K , Dasgupta .S

Solid State Device &VLSI Technology Group , Dept. of Electronics and Computer Engineering,
Indian Institute of Technology, Roorkee, Uttrakhand, India

1 2 3
E-mail : iitr.amitkumar@gmail.com, kumarfec@iitr.ernet.in, sudebfec@iitr.ernet.in

I. INTRODUCTION

The floating point [1] and logarithmic number
system [2,3] are the arithmetic number systems used
for representing real numbers in computer and digital
hardware. Most of the implementations use single (32-
bit) or double (64-bit) precision for representing floating
point and LNS.

The dynamic ranges of FP and LNS come at the cost
of lower precision and increased complexity over fixed
point. LNS provide a similar range to FP but have
advantages that multiplication and division in LNS are
simplified to fixed-point addition and subtraction. But
thedisadvantage of LNS is that addition and subtraction
are very difficult to perform in hardware descriptive
language (HDL) [4] and the accuracy depends upon the
size of only memory (ROM). In this paper, arithmetic
operations (addition, subtraction, multiplication and
division) for FP and LNS are implemented in HDL and
synthesis results for both are compared to find which
number system will suit better for field
programmable logic array (FPGA) [5] real number
representation.

II. NUMBER SYSTEMS

A. Floating Point

The IEEE introduced a standard IEEE 754 [1] to
define floating-point representation and arithmetic. The
single precision format uses 1 sign bit (S), 8 bits biased
exponent bits (E), and 23 bits mantissa (F). The
mantissa part has binary point to the left, and a hidden
'1' to the left of the point. The storage layout for single-
precision is shown below:

1Journal on Intelligent Electronic Systems, Vol.2, No.1, July 2008

Fig. 1. Floating Point Format.

The most significant bit starts from the left. The
format of numbers represented by the single-precision
representation is:

S E
 Value = (-1) x 2 -127 x (1.F). (1)

where F = (b +b ++b + + b).22 21 i 20

b = 1 or 0.i

S = sign (0 is positive, 1 is negative).

E = biased exponent.

e = unbiased exponent = E – 127(bias) .

The extreme exponents (0 and 255) are used to
represent special cases, thus this format has range from –

-126 127
1.0* 2 to 1.11111...* 2 i.e. from 1.2E-38 to 3.4E+38.

B. Logarithmic Number System [2,3]

The format of the logarithm number system is

SA EA
A = (-1) * 2 . (2)

where S is the sign bit and E is a signed fixed pointA A

number. The sign bit signifies the sign of the whole number.
E has two parts integer (I) and fraction part (F). The integerA

part is of 8 bits and the fraction part is of 23 bits. To
represent the very small numbers, E is negative.A

Fig. 2. Logarithmic Number System Format

The real numbers represented by this format are in
-128 -128

the range ± 2 to 2 i.e. ± 2.9E-39 to 3.4E+38.

III. FLOATING POINT ARITHMETIC UNIT

The Floating point arithmetic unit has four operations :
addition, subtraction, multiplication and division. The
operations are performed on operands A and B and the
result of the operation will be saved in Z, where A, B and Z
are given as

SA EA-127
A = (-1) * 2 * (1.M).A

SB EB-127
B = (-1) * 2 * (1.M).B

SZ EZ-127
 Z = (-1) * 2 * (1.M). (3)Z

A. FP Addition Algorithm [6,7,8]

Floating point addition involves the following steps:

1. Separate the sign, exponent and mantissa bits of the
both operands

2. Compare |A| and |B|. If |B| is greater than |A|, then
swapAand B.

3. Set the exponent of result E E S S .Z A Z A

4. Compute the difference d = E - E . Shift (1.M) to theB A B

right by d times and fill the leftmost bits with zeros.

5. Compute the mantissa of result M By adding (1.M)Z A

and (1.M).B

6. Normalization step : If carry is generated in step 5,
shift (1.M) right by one and increase the exponent EZ Z

by one.

7. Check resultant exponent for overflow / underflow :

If E is larger than maximum emponent allowed, thenZ

set the overflow flag.

If E is Smaller than minimum exponent allowed, thenZ

set the underflow flag.

8. Pack the sign bit, exponent bits and mantissa bits
according to the IEEE 754 floating point standard.

B. FP SubtractionAlgorithm [6,7,8]

Floating point subtraction involves the following steps:

1. Separate the sign, exponent and mantissa bits of the
both operands.

2. Compare |A| and |B|. If |B| is greater than |A|, then
swapAand B.

3. Set the exponent of result E equals to E and sign ofZ A

result S equals to S .Z A

4. Compute the difference d = E - E . Shift (1.M) to theB A B

right by d times and fill the leftmost bits with zeros.

5. Compute the mantissa of result M By adding (1.M)Z B

and (1.M).A

6. Normalization step : If carry is generated in step 5,
shift (1.M) right by one and increase the exponent EZ Z

by one.

7. Check resultant exponent for overflow / underflow :

If E is larger than maximum exponent allowed, then Z

set the overflow flag.

If E is Smaller than minimum exponent allowed, thenZ

set the underflow flag.

8. Pack the sign bit, exponent bits and mantissa bits
according to the IEEE 754 floating point standard.

C. FP multiplication algorithm [6,7,9]

Floating point multiplication involves the following steps:

1. Separate the sign, exponent and mantissa bits of the
both operands

2. Compute the sign of the result: S = S XOR S .Z A B

3. Compute the exponent of the result :

Result exponent = E + E - “01111111”.A B

4. Calculate the mantissa of the result [10]:

Multiply the mantissas : (1.M) * (1.M) The calculatedA B

mantissa will be in the 48 bits.

5. Normalize the result if needed.

6. Round the above result to the allowed number (24
bits) of mantissa bits.

7. Check resultant exponent for overflow/underflow:

If E is larger than maximum exponent allowed, thenZ

set the overflow flag.

If E is larger than minimum exponent allowed, thenZ

set the Underflow flag.

8. Pack the sign bit, exponent bits and mantissa bits
according to the IEEE 754 floating point standard, to
give the multiplication output.

D. FP division algorithm [6,7,9]

Floating point division involves the following steps:

1. Separate the sign, exponent and mantissa bits of the
both operands

2. Compute the sign of the result: S = S XOR S .Z A B

Journal on Intelligent Electronic Systems, Vol.2, No.1, July 20082

3. Compute the exponent of the result :

Result exponent = E + E - “01111111”.A B

4. Calculate the mantissa of the result [10]:

Multiply the mantissas : (1.M) * (1.M) .A B

5. Normalize the result if needed.

6. Round the above result to the allowed number (24
bits) of mantissa bits.

7. Check resultant exponent for overflow/underflow:

If E is larger than maximum exponent allowed, thenZ

set the overflow flag.

If E is larger than minimum exponent allowed, thenZ

set the Underflow flag.

8. Pack the sign bit, exponent bits and mantissa bits
according to the IEEE 754 floating point standard, to
give the multiplication output.

IV. LNS ARITHMETIC UNIT

The LNS arithmetic unit has four parts - addition,
subtraction, multiplication and division. The operations
are performed on operands A and B and the result of the
operation will be saved in Z, whereA, B and Z are given as

SA EA
A = (-1) * 2 .

SB EB
B = (-1) * 2 .

SZ EZ
 Z = (-1) * 2 . (4)

A. LNS Addition

1) LNS Addition Algorithm 1 [11,12,13,14]:

1. Separate the sign and fixed point exponent bits of
both operands.

2. Generate the ROM values for the function f(d)= log2
2-d

(1+) of suitable size using C++ and store that in a
constant two dimensional array.

3. If |A| < |B|, then swap the numbersAand B.

4. Sign of result, S = S .Z A

5. Calculate difference, x = E - E .A B

6. Use the second order polynomial interpolation
-x

method to obtain the value of (1 + 2) [15,16].

-x
7. Add E and log (1 + 2) to get the result exponent E .A 2 Z

8. Check for overflow/underflow.

9. Assemble the result in to 32 bit LNS format.

2) LNSAdditionAlgorithm 2 [17]:

1. Separate the sign and fixed point exponent bits of
both operands.

2. Generate the ROM values for the function
f (d) = where i = 2, 4, 8, 16,………..8388608

i.e. of size 23 using C++ and store that in a constant two
dimensional array rom1.

3. Generate the ROM values for the function
f (d) = where i = 2, 4, 8, 16,……..8388608

i.e. of size 23 using C++ and store that in a constant two
dimensional array rom2.

4. If |A| < |B|, then swap the numbersAand B.

5. Set sign of result, S = SZ A

6. Calculate difference, x = E - E . x is of 31 bits out ofA B

which 8 bits(from most significant bit)

will be in integer part and 23 bits(from least significant
bit) will be fraction part.

-x
7. Calculate the value of 2 following the steps given

below.

7.1 Add one to the integer part and subtract the
fraction part from one.

7.2 Initialize the variable of type std_logic_vector with
name rega and set it equal to 1.

7.3 For k starting from 0 to 22 repeat the steps from
7.4 to 7.5

7.4 If F(k) = '1' then rega = rega * rom1(k).

7.5 Increment k.

7.6 Right shift the rega by I times. Save the final result
-x -1.F

in a variable m. i.e. m = 2 = 2

8. Calculate the value of log (1 + m) following the steps
given below.

8.1 Add 1 to m and store the result in variable rega.

8.2 Initialize the variable of type std_logic_vector with
name regb.

8.3 For k starting from 0 to 22 repeat the steps from
8.4 to 8.6.

8.4 If rega >= rom1(22-i), then Set regb(22-i) = '1'
and rega = rega * rom2(22-I).

8.5 If rega < rom1(22-i), then Set regb(22-i) ='0'.

8.6 Increment k.

9. Add E and Log (1 + m) to get the result exponent E .A 2 Z

3Amit Kumar et al : Implementation of Floating Point and Logarithmic Number system Arithmetic unit and their Comparison for FPGA

10. Check for overflow/underflow.

11. Assemble the result in to 32 bit.

B. LNS Subtraction

1) LNS SubtractionAlgorithm 1 [11,12,14,18]:

1. Separate the sign and fixed point exponent bits of
both operands.

2. Generate the ROM values for the function f(d)= log2
-d

(1-2) of suitable size using C++ and store that in a
constant two dimensional array.

3. If |A| < |B|, then swap the numbersAand B.

4. Sign of result, S = S .Z A

5. Calculate difference, x = E - E .A B

6. Use the second order polynomial interpolation
-X

method to obtain the value of log (1-2) [15,16].2

-d
7. Add E and log (1-2) to get the result exponent E .A 2 Z

8. Check for overflow/underflow.

9. Assemble the result in to 32 bit LNS format.

2) LNS SubtractionAlgorithm 2 [17]:

1. Separate the sign and fixed point exponent bits of
both operands.

2. Generate the ROM values for the function f
(d) = where i =2, 4, 8, 16, 32………..8388608

i.e. of size 23 using C++ and store that in a constant
two dimensional array rom1.

3. Generate the ROM values for the function f
(d) = where i = 2, 4, 8, 16, 32…..8388608

i.e. of size 23 using C++ and store that in a constant two
dimensional array rom2.

4. If |A| < |B|, then swap the numbersAand B.

5. Sign of result, S = S .Z A

6. Calculate difference, x =E - E . x is 31 bits out ofA B

which 8 bits(from most significant bit)

will be in integer part(I) and 23 bits(from least significant
bit) will be fraction part(F).

-X
7. Calculate the value of 2 following the same steps

as in step number 7 of LNS addition algorithm 2.

8. Calculate the value of log (1 - m) following the
same steps as in step number 8 of LNS addition
algorithm 2.

9. Add E and (1 - m) to get the result exponent E .A Z

10. Check for overflow/underflow.

11. Assemble the result in to 32 bit LNS format.

C. LNS MultiplicationAlgorithm [11,18]

1. Separate the sign and fixed point exponent bits of
both operands.

2. Compute the sign of the result: S = S XOR SZ A B

3. E = E + E .Z A B

4. Check for overflow/underflow.

5. Assemble the result in to 32 bit LNS format.

D. LNS DivisionAlgorithm [11,18]

1. Separate the sign and fixed point exponent bits of
both operands.

2. Compute the sign of the result: S = S XOR S .Z A B

3. E = E + E .Z A B

4. Check for overflow/underflow.

5. Assemble the result in to 32 bit LNS format.

V. RESULTS

Tables I – IV show the synthesis results for different
FP and LNS operations. Tables V & VI show the variation of
accuracy for LNS addition and subtraction as the size of
ROM varies. In tables V and VI, all results are shown in
decimal number format after conversion from LNS for easy
comparison.

Table I. Addition Synthesis Results

Table II. Subtraction Synthesis Results

Journal on Intelligent Electronic Systems, Vol.2, No.1, July 20084

Table III. Multiplication Synthesis Results

Table IV. Division Synthesis Results

Table V. LNS Addition Examples

Table VI. LNS Subtraction Examples

VI. CONCLUSION

LNS has very efficient implementation of
multiplication and division operations in comparison to
the floating point. But LNS main disadvantage is its
addition and subtraction operations. To obtain good
accuracy in LNS addition and subtraction, more
values should be stored in the ROM. As a result, FPGA
utilization increases. LNS addition and subtraction require
different set of values to be stored in ROM i.e. same ROM
can not be used for both operations.

FP addition and subtraction are simple and does
not require ROM. The problem is more aggravate in

X
subtraction because the value of log varies from -1 to2

infinity as x varies from 0.5 to 0. These values of x do not
occur during addition. So more values are stored in ROM
for x variation between 0.5 and 0. This is the reason
that in LNS subtraction while increasing theROM size,
the values are added for the variation of x from 0.5 to 0 and
keeping rest of the ROM same.As a result in table V, in

the first example result is same for all sizes of ROM
for algorithm 1 because for that x is 1.77439. There are
algorithms for LNS addition and subtraction (LNS addition
algorithm 2 and LNS subtraction algorithm 2) for which
number of values in the ROM are fixed and have good
accuracy, but they require so much number of FPGA slices
that their FPGA implementation is of no use. So the
final choice left is to use the floating point representation to
represent the large values of real numbers.

ACKNOWLEDGMENT

This work was supported by Special Man Power
Development in VLSI & Related Softwares, Phase-II
(SMDP-II), Ministry of Information Technology, and
Government of India.

REFERENCES

[1] IEEE Standards Board, “IEEE Standard for
Binary Floating point Arithmetic,” 1985. Technical
Report ANSI/IEEE Std 754-1985, The Institute
of Electrical and Electronics Engineers, New
York.

[2] E. Swartzlander and Aristides G. Alexopoulos,
December 1975. “ The Sign/Logarithm Number
System,” IEEE Transactions on Computers, vol.
C-24, no. 12, pp. 1238- 1242.

[3] I. Koren, 2002. “ComputerArithmeticAlgorithms”,
nd

A.K. Peters Ltd., 2 edition.

[4] Douglas L. Perry, 2002. “VHDL programming by
example,” Tata McGraw Hills publisher, Fourth
edition.

[5] Wayne Wolf, 2005. “FPGA- Based System
Design,” Pearson education, First edition.

[6] Loucas Louca, Todd A. Cook and William H.
Johnson, April 1996. “Implementation of IEEE
Single Precision Floating Point Addition and
Multiplication on FPGAs, ”IEEE Symposium
on FPGAs for Custom Computing Machines, pp.
107 – 116.

[7] N.Shirazi, A.Walters and P. Athanas, April 1995.
“QuantitativeAnalysis of F l o a t i n g P o i n t
Arithmetic on FPGA Based Custom Computing
Machines,” IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 155 – 162.

[8] Jian Liang, Russell Tessier and Oskar
Mencer, April 2003. “Floating Point Unit
Generation and Evaluation for FPGAs,” IEEE
Symposium onField-Programmable Custom
Computing Machines, pp. 185- 194.

5Amit Kumar et al : Implementation of Floating Point and Logarithmic Number system Arithmetic unit and their Comparison for FPGA

[9] Pierre Deschamps, Jean Antoine Bioul and
Gustavo D. Sutter, 2006. “Synthesis of arithmetic
circuits – FPGA, ASIC and Embedded System,”
John Wiley & Sons, Inc., publication.

[10] M. Morris Mano, 2002. “Computer System
rd

Architecture,” Pearson Education Inc., 3 edition.

[11] J.N. Coleman, E.I. Chester, April 1999.
"A 32-Bit Logarithmic Arithmetic Unit and its
Performance Compared to Floating-Point," 14th
IEEE Symposium on Computer Arithmetic,
pp. 142- 151.

[12] Michael Haselman, Michael Beauchamp, Aaron
Wood, Scott Hauck, Keith Underwood and K.
Scott Hemmert April 2005. “A Comparison of
Floating Point and Logarithmic Number Systems
on FPGAs,” 13th Annual IEEE Symposium
on Field-Programmable Custom Computing
Machines, pp 180-190.

[13] Y. Wan and C.L. Wey, May 1999. “Efficient
algorithms for binary logarithmic conversion
and addition,” IEE Proceedings on Computers
and Digital Techniques, vol. 146, no. 3,
pp 168 – 172.

[14] Sheng-Chieh Huang, Liang-Gee Chen and
Thou-Ho Chen June 1994. “The chip design of
a 32-b logarithmic number system,” IEEE
International Symposium on Circuits and
Systems, vol. 4, pp 167-170.

[15] D.M. Lewis, July 1993. “An Accurate LNS
Arithmetic Unit Using Interleaved Memory

t h
Function Interpolator,” Proc. 11 IEEE
Symposium ComputerArithmetic, pp. 2-9.

[16] D. M. Lewis, August 1994. “Interleaved Memory
Function Interpolators with Applications to an
Accurate LNS Ari thmetic Unit , ” IEEE
Transactions on Computers, vol. 43, no. 8,
pp. 974-982.

[17] Demetrios K. Kostopoulos, November 1991.
”An Algorithm for the Computation of Binary
Logarithms,” IEEE Transactions on Computers,
vol. 40, no. 11, pp. 1267-1270.

[18] Lawrence K. Yu and David M. Lewis, October
1991. “A 30-b Integrated Logarithmic Number
System processor,” IEEE journal of Solid-state
Circuits, vol. 26, no. 10, pp. 1433-1440.

Amit Kumar received B.Tech degree
in Electronics and Instrumentation
Control Engg. from YMCA Institute of
Engineering in 2006. He is currently
pursuing M. Tech degree at Indian
Institute of Technology Roorkee in
special isat ion Semiconductor
Devices and VLSI Technology. He
worked on the Floating Point and

Logarithmic Number system for M. Tech Dissertation.

Dr. Saxena obtained Ph.D. from
Department of Electronics and
Electrical Engg.,UMIST/Sheffield
University (UK) in 1975 and 1978,
respectively as one of the two
Government of India National
Scholars.He is a Professor in Solid
Sta te Elect ron ics and VLSI
Technology in IIT - Roorkee. The

discovery of a level in GaAlAs is christened as 'Saxena's
Deep Donor' by Philips Research Laboratory, Eindhoven
(Netherlands). He is also a winner of INSAYoung Scientist,
Roorkee University Khosla Award Gold Medal, Kothari
Scientific Research Institute Award, S. K. Mitra Memorial
Awards (twice) of IETE and Bharat Excellence Award. He
has published about 175 research papers in international
journals and conference proceedings with very high
citation index of about 775 so far..Dr. Saxena has
supervised many Ph.D./M.E./M.Tech./M.Phil. theses in the
area of VLSI design, metal-semiconductor ohmic and non-
ohmic contacts, band structure and deep energy levels of
GaAs, GaAlAs, GaP, InP, etc and quantum
wells under pressure. He has also written AICTE
sponsored nine volumes on the related subjects for
working professionals.

Journal on Intelligent Electronic Systems, Vol.2, No.1, July 20086

