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Floating point (FP) representation is commonly used to represent real numbers. Some papers have suggested the use of
logarithmic number system (LNS) in addition to floating point. In LNS, a real number is represented as a fixed point
logarithm. Therefore multiplication and division in LNS are much simpler in comparison to that in FP, so the LNS can be
beneficial if addition and subtraction can be performed with speed and accuracy equal to FP. LNS addition and subtraction
requires interpolation technique for which some vales are stored in read only memory (ROM). In this paper, different
sizes of ROM are used for addition and subtraction and their performances are compared to the floating point.
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I. INTRODUCTION

The floating point [1] and logarithmic number
system [2,3] are the arithmetic number systems used
for representing real numbers in computer and digital
hardware. Most of the implementations use single (32-
bit) or double (64-bit) precision for representing floating
point and LNS.

The dynamic ranges of FP and LNS come at the cost
of lower precision and increased complexity over fixed
point.  LNS  provide  a  similar  range  to  FP  but  have 
advantages that multiplication and division in LNS are
simplified to fixed-point addition and subtraction. But
thedisadvantage of LNS  is that  addition and subtraction 
are very difficult to perform in hardware descriptive
language (HDL) [4] and the accuracy depends upon the
size of only memory (ROM). In this paper, arithmetic
operations (addition, subtraction, multiplication and
division) for FP and LNS are implemented in HDL and
synthesis results for both are compared to find which
number system will suit better for field
programmable logic array (FPGA) [5] real number
representation.

II. NUMBER SYSTEMS

A.  Floating Point

The IEEE introduced a standard IEEE 754 [1] to 
define floating-point representation and arithmetic. The
single precision format uses 1 sign bit (S), 8 bits biased 
exponent bits (E), and 23 bits mantissa (F). The
mantissa part has  binary point to the left, and a hidden 
'1' to the left of the point. The storage layout for single-
precision is shown below:
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Fig. 1. Floating Point Format.

The  most  significant  bit  starts from the  left. The
format of numbers represented by the single-precision
representation is:

S E
                        Value = (-1)  x 2 -127 x (1.F).               (1)

where F = (b +b  + .....................+b + ...... + b ).22 21 i 20

b  = 1 or 0.i

S = sign (0 is positive, 1 is negative).

E = biased exponent.

e = unbiased exponent = E – 127(bias) .

The extreme exponents (0 and 255) are used to
represent special cases, thus this format has range from –

-126 127
1.0* 2 to 1.11111...* 2 i.e. from 1.2E-38 to 3.4E+38.

B. Logarithmic Number System [2,3]

The format of the logarithm number system is

SA EA
A = (-1)  * 2 .                              (2)

where S is the sign bit and E is a signed fixed pointA A

number. The sign bit signifies the sign of the whole number.
E has two parts integer (I) and fraction part (F). The integerA

part is of 8 bits and the fraction part is of 23 bits. To
represent the very small numbers, E is negative.A

Fig. 2. Logarithmic Number System Format



The real numbers represented by this format are in
-128 -128

the range ± 2 to 2 i.e. ± 2.9E-39 to 3.4E+38.

III. FLOATING POINT ARITHMETIC UNIT

The Floating point arithmetic unit has four operations :
addition, subtraction, multiplication and division. The
operations are performed on operands A and B and the
result of the operation will be saved in Z, where A, B and Z
are given as

SA EA-127
A = (-1)  * 2  * (1.M ).A

SB EB-127
B = (-1)  * 2  * (1.M ).B

SZ EZ-127
                        Z = (-1)  * 2  * (1.M ). (3)Z

A. FP Addition Algorithm [6,7,8]

Floating point addition involves the following steps:

1. Separate the sign, exponent and mantissa bits of the
both operands

2. Compare |A| and |B|. If |B| is greater than |A|, then
swapAand B.

3. Set the exponent of result E E S S .Z A Z A

4. Compute the difference d = E - E . Shift (1.M ) to theB A B

right by d times and fill the leftmost bits with zeros.

5. Compute the mantissa of result M By adding (1.M )Z A

and (1.M ).B

6. Normalization step : If carry is generated in step 5,
shift (1.M ) right by one and increase the exponent EZ Z

by one.

7. Check resultant exponent for overflow / underflow :

If E is larger than maximum emponent allowed, thenZ

set the overflow flag.

If E is Smaller than minimum exponent allowed, thenZ

set the underflow flag.

8. Pack the sign bit, exponent bits and mantissa bits
according to the IEEE 754 floating point standard.

B. FP SubtractionAlgorithm [6,7,8]

Floating point subtraction involves the following steps:

1. Separate the sign, exponent and mantissa bits of the
both operands.

2. Compare |A| and |B|. If |B| is greater than |A|, then
swapAand B.

3. Set the exponent of result E equals to E and sign ofZ A

result S equals to S .Z A

4. Compute the difference d = E - E . Shift (1.M ) to theB A B

right by d times and fill the leftmost bits with zeros.

5. Compute the mantissa of result M By adding (1.M )Z B

and (1.M ).A

6. Normalization step : If carry is generated in step 5,
shift (1.M ) right by one and increase the exponent EZ Z

by one.

7. Check resultant exponent for overflow / underflow :

If E  is larger than maximum exponent allowed, then Z

set the overflow flag.

If E is Smaller than minimum exponent allowed, thenZ

set the underflow flag.

8. Pack the sign bit, exponent bits and mantissa bits
according to the IEEE 754 floating point standard.

C. FP multiplication algorithm [6,7,9]

Floating point multiplication involves the following steps:

1. Separate the sign, exponent and mantissa bits of the
both operands

2. Compute the sign of the result: S = S XOR S .Z A B

3. Compute the exponent of the result :

Result exponent = E + E - “01111111”.A B

4. Calculate the mantissa of the result [10]:

Multiply the mantissas : (1.M ) * (1.M ) The calculatedA B

mantissa will be in the 48 bits.

5. Normalize the result if needed.

6. Round the above result to the allowed number (24
bits) of mantissa bits.

7. Check resultant exponent for overflow/underflow:

If E is larger than maximum exponent allowed, thenZ

set the overflow flag.

If E is larger than minimum exponent allowed, thenZ

set the Underflow flag.

8. Pack the sign bit, exponent bits and mantissa bits
according to the IEEE 754 floating point standard, to
give the multiplication output.

D. FP division algorithm [6,7,9]

Floating point division involves the following steps:

1. Separate the sign, exponent and mantissa bits of the
both operands

2. Compute the sign of the result: S = S XOR S .Z A B
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3. Compute the exponent of the result :

Result exponent = E + E - “01111111”.A B

4. Calculate the mantissa of the result [10]:

Multiply the mantissas : (1.M ) * (1.M ) .A B

5. Normalize the result if needed.

6. Round the above result to the allowed number (24
bits) of mantissa bits.

7. Check resultant exponent for overflow/underflow:

If E is larger than maximum exponent allowed, thenZ

set the overflow flag.

If E is larger than minimum exponent allowed, thenZ

set the Underflow flag.

8. Pack the sign bit, exponent bits and mantissa bits
according to the IEEE 754 floating point standard, to
give the multiplication output.

IV. LNS ARITHMETIC UNIT

The LNS arithmetic unit has four parts - addition,
subtraction, multiplication and division. The operations
are performed on operands A and B and the result of the
operation will be saved in Z, whereA, B and Z are given as

SA EA
A = (-1)  * 2 .

SB EB
B = (-1)  * 2 .

SZ EZ
                                 Z = (-1)  * 2 .                            (4)

A.  LNS Addition

1)  LNS Addition Algorithm 1 [11,12,13,14]:

1. Separate the sign and fixed point exponent bits of
both operands.

2. Generate the ROM values for the function f(d)= log2
2-d

(1+ ) of suitable size using C++ and store that in a
constant two dimensional array.

3. If |A| < |B|, then swap the numbersAand B.

4. Sign of result, S = S .Z A

5. Calculate difference, x = E - E .A B

6. Use the second order polynomial interpolation
-x

method to obtain the value of ( 1 + 2 ) [15,16].

-x
7. Add E and log ( 1 + 2 ) to get the result exponent E .A 2 Z

8. Check for overflow/underflow.

9. Assemble the result in to 32 bit LNS format.

2) LNSAdditionAlgorithm 2 [17]:

1. Separate the sign and fixed point exponent bits of
both operands.

2. Generate the ROM values for the function
f (d) = where i = 2, 4, 8, 16,………..8388608

i.e. of size 23 using C++ and store that in a constant two
dimensional array rom1.

3. Generate the ROM values for the function
f (d) = where i = 2, 4, 8, 16,……..8388608

i.e. of size 23 using C++ and store that in a constant two
dimensional array rom2.

4. If |A| < |B|, then swap the numbersAand B.

5. Set sign of result, S = SZ A

6. Calculate difference, x = E - E . x is of 31 bits out ofA B

which 8 bits(from most significant bit)

will be in integer part and 23 bits(from least significant
bit) will be fraction part.

-x
7. Calculate the value of 2 following the steps given

below.

7.1 Add one to the integer part and subtract the
fraction part from one.

7.2 Initialize the variable of type std_logic_vector with
name rega and set it equal to 1.

7.3 For k starting from 0 to 22 repeat the steps from
7.4 to 7.5

7.4 If F(k ) = '1' then rega = rega * rom1(k).

7.5 Increment k.

7.6 Right shift the rega by I times. Save the final result
-x -1.F

in a variable m. i.e. m = 2 = 2

8. Calculate the value of log (1 + m) following the steps
given below.

8.1 Add 1 to m and store the result in variable rega.

8.2 Initialize the variable of type std_logic_vector with
name regb.

8.3 For k starting from 0 to 22 repeat the steps from
8.4 to 8.6.

8.4 If rega >= rom1(22-i), then Set regb(22-i) = '1'
and rega = rega * rom2(22-I).

8.5 If rega < rom1(22-i), then Set regb(22-i) ='0'.

8.6 Increment k.

9. Add E and Log (1 + m) to get the result exponent E .A 2 Z
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10. Check for overflow/underflow.

11. Assemble the result in to 32 bit.

B. LNS Subtraction

1) LNS SubtractionAlgorithm 1 [11,12,14,18]:

1. Separate the sign and fixed point exponent bits of
both operands.

2. Generate the ROM values for the function f(d)= log2
-d

(1-2 ) of suitable size using C++ and store that in a
constant two dimensional array.

3. If |A| < |B|, then swap the numbersAand B.

4. Sign of result, S = S .Z A

5. Calculate difference, x = E - E .A B

6. Use the second order polynomial interpolation
-X

method to obtain the value of log (1-2 ) [15,16].2

-d
7. Add E and log (1-2 ) to get the result exponent E .A 2 Z

8. Check for overflow/underflow.

9. Assemble the result in to 32 bit LNS format.

2) LNS SubtractionAlgorithm 2 [17]:

1. Separate the sign and fixed point exponent bits of
both operands.

2. Generate the ROM values for the function f
(d) = where i =2, 4, 8, 16, 32………..8388608

i.e. of size 23 using C++ and store that in a constant 
two dimensional array rom1.

3. Generate the ROM values for the function f
(d) = where i = 2, 4, 8, 16, 32…..8388608

i.e. of size 23 using C++ and store that in a constant two
dimensional array rom2.

4. If |A| < |B|, then swap the numbersAand B.

5. Sign of result, S = S .Z A

6. Calculate difference, x =E - E . x is 31 bits out ofA B

which 8 bits(from most significant bit)

will be in integer part(I) and 23 bits(from least significant
bit) will be fraction part(F).

-X
7. Calculate the value of 2 following the same steps

as in step number 7 of LNS addition algorithm 2.

8. Calculate  the  value  of  log  (1 - m)  following  the 
same steps as in step number 8 of LNS addition
algorithm 2.

9. Add E and (1 - m) to get the result exponent E .A Z

10. Check for overflow/underflow.

11. Assemble the result in to 32 bit LNS format.

C. LNS MultiplicationAlgorithm [11,18]

1. Separate the sign and fixed point exponent bits of
both operands.

2. Compute the sign of the result: S = S XOR SZ A B

3. E = E + E .Z A B

4. Check for overflow/underflow.

5. Assemble the result in to 32 bit LNS format.

D. LNS DivisionAlgorithm [11,18]

1. Separate the sign and fixed point exponent bits of
both operands.

2. Compute the sign of the result: S = S XOR S .Z A B

3. E = E + E .Z A B

4. Check for overflow/underflow.

5. Assemble the result in to 32 bit LNS format.

V.  RESULTS

Tables I – IV show the synthesis results for different
FP and LNS operations. Tables V & VI show the variation of
accuracy for LNS addition and subtraction as the size of
ROM varies. In tables V and VI, all results are shown in
decimal number format after conversion from LNS for easy
comparison.

Table I. Addition Synthesis Results

Table II. Subtraction Synthesis Results

Journal on Intelligent Electronic Systems, Vol.2, No.1, July  20084



Table III. Multiplication Synthesis Results

Table IV. Division Synthesis Results

Table V. LNS Addition Examples

Table VI. LNS Subtraction Examples

VI.  CONCLUSION

LNS has very efficient implementation of
multiplication and division operations in comparison to
the floating point. But LNS main disadvantage is its
addition and subtraction operations. To obtain good
accuracy in LNS addition and subtraction, more
values should be stored in the ROM. As a result, FPGA
utilization increases. LNS addition and subtraction require
different set of values to be stored in ROM i.e. same ROM
can not be used for both operations.

FP addition and subtraction are simple and does
not  require  ROM. The  problem  is  more aggravate in 

X
subtraction because the value of log varies from -1 to2

infinity as x varies from 0.5 to 0. These values of x do not 
occur during addition. So more values are stored in ROM 
for x variation between 0.5 and 0. This is the reason
that in LNS subtraction while increasing theROM size,
the values are added for the variation of x from 0.5 to 0 and
keeping rest of the ROM same.As a result in table V, in

the first example result is same for all sizes of ROM
for algorithm 1 because for that x is 1.77439. There are
algorithms for LNS addition and subtraction (LNS addition
algorithm 2 and LNS subtraction algorithm 2) for which
number of values in the ROM are fixed and have good
accuracy, but they require so much number of FPGA slices
that their FPGA implementation is of no use. So the
final choice left is to use the floating point representation to
represent the large values of real numbers.
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