International Journal on Intelligent Electronic System, Vol. 7 No. 2 July 2013 41

VLS| ARCHITECTURE OF DECISION BASED MODIFIED SELECTION SORT FILTER
FOR SALT AND PEPPER NOISE REMOVAL

Vasanth K.

Sathyabama University, Chennai, Tamilnadu, India.
Email: vasanthece_k@yahoo.co.in

Abstract

A Novel architecture is proposed for the decision based modified selection sorting. The need for an optimized area,
speed and power plays a vital role for any VLSI implementation of image processing hardware. The proposed architecture
checks the given pixel is noisy or not and finds the median only if it is noisy. Under high noisy conditions the computed
median might also be noisy hence arithmetic mean of uncorrupted pixels in the current window or replacement of
neighborhood pixel over the processed pixel is done. The proposed architecture is compared with other decision based
median finding architecture on the basis of power, speed, and area. The proposed architecture is targeted to Spartan
3e Device with gate capacity 5000 using Xilinx 7.1i compiler version. The proposed scheme is capable of operating at
233.318MHz requiring 2800 number of slices with a power dissipation of 100mw.

Keywords—Decision based median filters, modified selection sorting, salt and pepper noise

I. INTRODUCTION

Median filtering is a popular method of noise
removal,employed extensively in applications involving
speech and signal and image processing. This
non-linear technique has proven to be a good
alternative to linear filtering as it can effectively
suppress impulse noise while preserve edge
information.[1] [18]-[25]. These properties make it very
popular filter in speech processing and image
processing schemes. These are two types of linear
filters. Non-recursive and recursive. In non-recursive
median filtering, a window is moved along the sampled
values of the image, and the center value of each
window is replaced by the median of the values in the
window. For instance in 2D non-recursive median
filtering , the (i,j)th window of size(k*k), W, is centered
at (i) and the (i,j)th output y;= median {W,]-}. In
recursive median filtering, the window consists of recent
median values as well as input values. In 1D recursive
median filtering, the i window of size (2N+1), Wij
consists of (N+1) input values x..... X, and N

output values VieNeeoeoYiets

Wi={Yi=N, ... Yi_ 1. %X,1} and the "

output yi=median{w;}. The existing architecture for
median filter can be broadly classified in to two classes.
The array based architecture [2,3,4], and sorting
network based architecture [5,6] gives an excellent
survey of the existing architecture. The array based
architecture consists of K processors of the windows

is of size K, but they have a large sample period
compared to sorting network based architecture. A
good survey paper of VLS| median filters can be found
in [7] where the author discussed hardware complexity
in terms of number of samples ‘N, word length ‘/, and
running size ‘A. In principle these digital algorithms and
methods can be classified in to two categories:
word-level and bit-level as discussed in[8] In this paper
only word level median filters are studied since they
offer high throughput capability as required in many
real-time image/video systems. However a very
cost-effective hardware solution to meet this goal is
often difficult to achieve and hence system performance
becomes degraded to allow trade-off between hardware
cost and achievable performance. For example a fast
median filter Based on the bubble sorting algorithm can
be found in [9] By means of a set of processing
elements or PE®, the required values can be obtained
with a latency of N cycles, where N is the number of
input samples. Though this approach is fast, the size
o the hardware implementation complexity is
proportional to the square of the number of input
samples. Hence hardware overheads increase rapidly
with the number o input samples. In addition to this
sorting kernel, it is necessary to provide extra hardware
in the form of a data buffer to rearrange input samples
for the parallel processing and hence increase the
memory bandwidth. Another solution is a message
passing method [10] Realized on a systolic array
architecture [11] both deletion and insertion messages
pass through the systolic arrays until certain conditions

42 International Journal on Intelligent Electronic System, Vol. 7 No. 2 July 2013

are encountered. Although the hardware complexity
depends on the number of input samples (M), the
latency remains the same as that needed in the parallel
bubble sorter. This latency of N cycles may not be
allowed when real-time performance is concerned.
Sorting is one of the most commonly used data
processing applications as a fundamental operation on
a computer system. Much effort has been devoted to
find out faster sorting algorithms because of its practical
importance as well as its theoretical interest [12]
Proposed a parallel sorting algorithm based on a bitonic
sequence and obtained an execution time of

O(/ogZN) for N data using O(IogZN) processors.[13]
Also proposed a bitonic sorting with the perfect shuffle

network and achieved an execution time of O(/ogzN)
using O(N IogzN) processors.[14] Proposed another

algorithm with O(/ogZN) time for O(NlogN)
processors. Horiguchi and sheigei [15] Proposed a
parallel sorting algorithm with O (N) time for O (log N)
linearly connected arrays. Thompson and Kung [16]
And Nassimi and sahni [17] Extended Bacher’s
algorithm to a mesh connected arrays with N
Processors. They obtained the execution time of
O(N) for N data. The revolutionary VLS| device
technology has made practical and production of
special purpose computing system with highly parallel
structure. The systolic array is generally a set of
relatively a simple processing unit of the same type,
which are connected by a simple interconnection
scheme and are able to be operated in parallel. The
architecture serves a very high performance, because
the primitive cells use data from neighbors without
having to store and retrieve intermediate results.
Section Il deals with the implementation of proposed
algorithm. Section Il deals with simulation results
Section IV deals with conclusions.

II. IMPLEMENTATION OF PROPOSED
ALGORITHM

The proposed algorithm is given as follows:

Step 1. A 2-D window of size 3*3 is selected. Assume
the pixel to be processed is P(X, Y).

Step 2. The pixel intensities of the window considered
are converted into an 1D array of size 9.

Step 3.The pixel with maximum intensity is propagated
to the final array position of the input data by the

process of swapping as shown in figure 1. This gives
Pmax-
Step 4. The pixel with minimum intensity is

propagated to the last but one position just next to
Pray Of the array by the process of swapping the array

elements, excluding Pn,y. This gives Pmin as shown
in figure 1.

0 0 255 0 45 122 123 255

122 [123 255 255| 255
0 | 255 255 255|123 :> 0 255 235
0 | 122 255 124 255
0 255 255 255 255 0 122 255

-

| 122/ 0] 0] 123] 255] 122] 255 [255 255 |
MAX
[0]o[122 [123 [122 [255 [255 | 255 | 255 |

N{in
[o] 122|123 | 122 | 255 255 | 255 | 0'] 255 |

Fig. 1. lllustration of the proposed algorithm to find
Pmin and Pmax

Step 1: Convert the matrix into 1D array

Step 2: Propagate the maximum pixel intensity to the
9" array position considering the above array as input

Step 3: Propagate the maximum pixel intensity to the
8' array position considering the first 8 pixel intensities
of the above array as input

0

255

0| 122 | 123 | 122 | 255 | 255 | 255

Step 4:

Case 1. P(X, Y) is an uncorrupted pixel, if
Prin <P (X, Y) < Ppax the pixel being Processed is
left unchanged. This case does not involve the
computation of the median. Otherwise, P(X,Y) is a

corrupted Pixel. The median is computed only when
the processed pixel is noisy.

Vasanth : VLSI Architecture of Decision based Modified Selection 43

Case 2. If P(X,Y) is a corrupted pixel, the median
is computed as follows. To find the median Pmed,
swap the remaining unsorted array elements obtained
from step 3 , excluding F,ax and P, for four passes

as shown in figure 2. After each pass, the smallest
element encountered in the current pass will reside in
the last position traversed. So each pass can be one
step shorter than the previous pass, instead of every
pass continuing to traverse all the elements at the end,
which are already in their final positions and will not
move in any case. After the 4 pass, the pixel in the
4th position will give the median of the window as
illustrated in the figure.2. The corrupted pixel is
replaced by its median value.

The corrupted pixel is replaced by its median
value. For high noise densities the manipulated median
may also be noisy. So check the calculated median is
noisy —or notlf Ppin<Preg<Pmax and

0< Ppeg<255. then Pmed is a uncorrupted pixel,
replace on the processed pixel.

Step 4 : Case (2)

Input array to find the median excluding min and
max pixel intensities (i.e) the first seven elements of
the array The median found in the 4t pass, which is
the final pass. The smallest element encountered in the
current pass will reside in the last position traversed.
So each pass is one step shorter than the previous
pass.

122 | 123 | 122 | 255 | 255 | 255 (O | O [255

123 [122 | 255 (255 |255 | 122 | 0 | O | 255

VI

123 | 255 | 255 | 255 1‘;2//122 0|0 |255

255 | 255 255 |123 122 1221 0 | O [255

Fig. 2 lllustration of the proposed algorithm to find
Prmed.

Case 3. If Puin<Pred<Pmax i8 not satisfied or
255 < Peg<0, then Ppoq is @ noisy pixel. In this

case, the P(X,Y) is replaced by the average of the
non- noisy pixels in the window considered. These
pixels must satisfy the condition, min < pixel intensity
< max. only those pixels satisfying the above condition
is considered as non noisy or noise free pixel of the

current processing window. When no non noisy pixel
is presented then go to case4

Case 4. |If there are no uncorrupted pixels in the
window,replace the corrupted pixel with the
neighborhood pixel.

Step 5. Steps 110 5 are repeated until the processing
is completed for the entire image. The proposed
algorithm is illustrated in figure 1-3 [20].

Case 1:

(0<123 < 255)

center pixel is not
noisy so the same
value is retained.

0 255 255|255 123
Lo 122 255 124 255

0 255 255 255 255

Case 2

(0< 123 < 255)
center pixel is
not noisy so the
same value is
retained.

0 255 255|255 123
0 | 122 255 124 255
0 255 255 255 255

Case 3
0 |0 255 0 (255

122 255@255 255 oo .
pixel is noisy so the

0 255 255 123]123 medium is found as
0 122 255 124 255 O5E

0 255 255 255 255

(0 < 255 < 255) center

(0< 123 < 255)
Median is also noisy.
Replace processed
pixel by arithmetic
mean of non noisy
pixel inside the
window. Here only
one non noisy pixel
i.e. 123.

44 International Journal on Intelligent Electronic System, Vol. 7 No. 2 July 2013

Case 4

] (0 < 255 < 255)
0 0 [255 0 255

center pixel is
122 123 | 123 (2552557 noisy, o the

0 255|255 255 255 . .
median is found
0 122 255 124 255 055
0 255 255 255 255 '
(0 <255 < 255)

Median is also
noisy. There is
no non noisy
pixel in the
window. Replace
by left
neighborhood

from the last
processed value.

Il HARDWARE IMPLEMENTATION

We propose a sequential architecture for the
proposed algorithm which uses 3x3 spatial window as
shown in figure 3. The 2D data acquired from the
window is converted to 1D.The architecture is split up

into various modules such as max_unit, Min Unit,
Median Unit and decision unit. Max and Min unit
computes maximum and minimum values of the array
in a 3x3 window.

Max_unit: The proposed architecture consists of max
unit that manipulates the maximum number of the given
array. This unit compares each input with each other
and swaps subsequently to obtain the maximum value
of the array. The manipulated maximum value is placed
in the last position of the input array. It is termed as
Pmax

Min_Unit: The proposed architecture consists of min
unit that manipulates the minimum number of the given
array. The max unit finds maximum value of the input
array; hence to find minimum value of the sorted array
we consider only the remaining 8 values. This unit
compares each input with each other and swaps
subsequently to obtain the minimum value of the array.
The manipulated minimum value is placed in the last
but one position of the input array. It is termed as Pmin

Median_Unit: This unit arranges the remaining five
inputs in ascending by the process of compare and

CLK —p I I_
MAX_ || >
INT =|—/—>! ArRRAY >
IN2 —>
IN3 —p MIN_ [Tl >
Yy -
7> arrav | >
ING =¥
INS =¥ |
Vi Med
|N6 —] r _) ian 0 0 in5
01 in5
IN7 > 1 0 median
> Rippl VISION 13 e

ipple » DIVISIOI .
INg —> P > carry RESTORING nelghbor

adder Algorithm

output

ING =¥
RST —

Fig. 3 Architecture for the proposed algorithm

Vasanth : VLSI Architecture of Decision based Modified Selection 45

swapping i.e to find the median Pmed, swap the
remaining unsorted array elements obtained excluding
Pmax and Pmin for four passes. After each pass, the
smallest element encountered in the current pass will
reside in the last position traversed. So each pass can
be one step shorter than the previous pass, instead of
every pass continuing to traverse all the elements at
the end, which are already in their final positions and
will not move in any case. After the 4th pass, the pixel
in the 4" position will give the median of the window.
The median is evaluated only if the decision unit
decides the processed pixels “in5” is noisy.

Decision unit: This unit compares the processed pixel
“in5"with the maximum and minimum value of the given
array. If the value lies within the range then the pixel
is considered as non noisy. If the value lies outside
this range then pixel is considered as noisy and a
control signal is summoned to perform the median of
the remaining output. Then the processed median is
compared with the minimum and maximum values of
the current processing window. If the median lies
outside the range it is considered as noisy; hence
evaluate the mean of the non noisy pixel inside the
current processing window. At higher noisy conditions
the processing window does not have any non noisy
pixels hence the neighborhood pixel is replaced in the
output as shown in the table 1.

Table 1. Combination of decision performed

Value Value

Action)
from from 1l Explanation
- - Performed
Decision | Decision
0 0 In 5 Pixel is not noisy and the
0] 5 processed pixel is retained.

Processed pixel is Inoisty,
Median but evaluated median is
not noisy.

Processed pixel is noisy,

processed median is also
Neighbor noisy.

Mean/

Mean unit: This unit checks each element of an
array for the presence of the outliers. If pixel is not
noisy then it is accumulated in an accumulator and
latter fed as input to 8 bit ripple carry adder. After
checking all the pixels of an array, division is
implemented using non restoring algorithm. Initially
there is a compare unit before this mean unit. It

decides the number of noisy pixels. Thereby the
number of noisy pixel is fed as an input to a decision
unit to choose Arithmetic mean of non noisy pixels/
Neighborhood pixel that has to be replaced in the
output. If noisy pixel is present then the noisy counter
increments by 1. If this value is non zero then it means
there are no non noisy pixels; hence the output is
neighborhood value. If there are non noisy pixels then
arithmetic mean of the non noisy pixels is sent out.

IV. SIMULATION RESULTS

The proposed architecture is implemented for
XC3s5000-5fg900 using Xilinx 7.1 compiler tool for
synthesis and modelsim 5.8lli for simulation as a third
party tool using VHDL. All the median finding sorting
algorithms have been implemented as described. First
the individual sorting followed by the decision to
estimate the pixel is noisy or not. But the proposed
architecture finds median only when the pixel is noisy.
Table 2 illustrates the comparison of other decision
based sorting techniques with the proposed logic on
the basis of area, speed, power. Figure 4 gives the
utilization of number of slices for various algorithms.
Figure 5 gives the utilization of 4 input look up table
by various algorithms. Figure 6 denotes the comparison
of number of slices utilized for various algorithms after
place and route. Figure 7,8 illustrates the minimum
period and operating frequency of various algorithms.
Figure 9 implies the power used in each algorithms.
Figure 10-14 gives the simulation result of various
decision based sorting technique. Figure 15- 19 depicits
the floor plan for the various decision based sorting
techniques. Figure 20-24 denoted the routed FPGA for
various decision based sorting logic.

Comparison of Slices VS Various Algorithms(After
Synthesis)
N 8000
U s 7000
': :.ec-ou b
E € 5000
RE,.
g 4000
o 3000
F 2000
1000
0
Maodified Bubble Heap Selection Insertion
i VARIOUS ALGORITHMS

Fig. 4. Comparison of slices utilized vs various
algorithms after synthesis

46 International Journal on Intelligent Electronic System, Vol. 7 No. 2 July 2013

Table 2. Comparison of Decision based Median

Comparison of 4 I/P LUT's VS Various algorithms fINdan a|90|'ithm5 for the target FPGA
Xc3s5000-5fg900
& 12000
% | No. | Parameters | Insertion | Bubble | Heap | Selection | Modified
» Selection
5 s I -
E 1. | Slices 6479 6712 | 6814 727 3629
; 6000
= 2. |4ip LUP 9738 | 9712 | 9635 | 10508 5209
L 4000
.| 3. [Bonded 329 | 329 | 329 | 329 329
H 0B
= Q
SM;;I]E:.I‘ Bubble Heap Selection Insertion 4. Gdl 1 1 1 1 1
VARIOUS ALGORITHMS
Devicve Utilization Factor After place and Route
Fig. 5. Comparison of 4 input LUT’s vs various 1. |cdl - - - - _
algorithms after synthesis
2. | External - - - - -
GCLKIOBs
Comparison of Slices VS Various Algorithms after
Place & Route 3. | External 329 329 | 329 329 329
G000
a I10Bs
N 5000 —
g 4. |LOCed 0 0 0 0 0
@ #o00 I0Bs
[&]
-1 3000
e 5. | LOCed 0 0 0 0 0
g GCLKIOBs
% 1000
z 6. | Slices 5151 | 4958 | 5049 | 5418 2800
o X
Modified Bubble Heap Selection Insertion
Selection Triming Specifications before Place and Route
VARIOUS ALGORITHMS
1. [Minimum 4.148 | 4.106 | 4.106 | 4.106 4.286
pepriod
Fig. 6. Comparison of number of slices utilized vs (ns)
various algorithms after place & Route 2. |Operating | 241.08 [243546|24354| 243546 | 233318
Frequency 6
3. | Minimum | 257.78ns |192.590| 360.53 | 439.086ns | 219.208ns
inputarinal ns ins
Comparison of Minimuim Period of various algorithms before the
43 clock
‘: 4. | Maximum 7.16ns [7.16ns [7.16ns| 7.16ns 7.16ns
= Toi output
] .
T b - required
w .
L time after
: II . “ =
=405
=
= : Power Consumptioin
Maodified Bubble Heap Selection Insertion
Stecn VARIOUS ALGORITHMS 1. | Power 298 | 208 | 298 | 298 100
(unit)

Fig. 7. Comparison of minimum period required by
various algorithms

Vasanth : VLSI Architecture of Decision based Modified Selection 47

Comparison of Operating Frequency of various
Algorithms

248

244

242
240
238
236

234

232
230
228

Modified Bubble Heap Selection Insertion Sortlng
Selection
VARIOUS ALGORITHMS

Operating Frequency Mhz

Fig.11 Simulation result of decision based bubble

Fig. 8. Comparison of operating frequency required
by various algorithms

Comparison of Power by Various Algorthms

350

300

Fig.12 Simulation result of decision based Selection
sorting

200

150

100
0

Modified Bubble Heap Selection Insertion

Selection VARIOUS ALGORITHMS

POWER (mw)

Fig. 9. Comparison of power vs various algorithms

Tt Fig.13 Simulation result tgf decision based Heap
PRI sorting
redion_sot/d : ‘

i, so/e A sim:/insertion sort/c @ 79 ps

Insfon st
rssion_sotlg
Inveen_soth
Invfen st

Fig. 10 Simulation result of decision based Insertion Fig.14 Simulation result of decision based Modified
sorting Selection sorting

48 International Journal on Intelligent Electronic System, Vol. 7 No. 2 July 2013

1
il
1
i
i
i
H
i
i
i
i
i
i
|
i
j
1
i
{
4
H
¥
L
4
i
:]
|
g
1
1
1
1
i
1
1
1
i
i
b
b
‘e
i
i

Fig.16 Floor plan of decision based Bubble sorting Fig.18 Floor plan of decision based Selection sorting

Vasanth : VLSI Architecture of Decision based Modified Selection 49

Fig.19 Floor plan of decision based Modified Fig.21 Routed FPGA of decision based Bubble
Selection sorting sorting

Fig.20 Routed FPGA of decision based insertion Fig.22 Routed FPGA of decision based Heap sorting
sorting

50 International Journal on Intelligent Electronic System, Vol. 7 No. 2 July 2013

Fig.23 Routed FPGA of decision based Selection
sorting

Fig.24 Routed FPGA of decision based Modified
Selection sorting

The architecture employs modified selection sort
to compute the median. The sum of non noisy pixels
is done using a simple ripple carry adder and the result
is divided by the number of non noisy pixels using non
restoring algorithm. The decision unit employs a
multiplexer which replaces the suitable output after
classifying the pixel is noisy or not.

V. CONCLUSION

In this paper a novel architecture has been
proposed which employs sequential processing of
processing elements such as maximum finding
minimum finding logic, comparator to check the
processed pixel is noisy or not then a comparison logic
to identify the non noisy pixels in the current window
and adder to add the non noisy pixel and a divider to
find the arithmetic mean of non noisy pixel in the given
window or replacing the neighborhood pixel which
results in switched median filter. The design of the
proposed algorithm has the ability to exploit the certain
features of 3x3 window. We have implemented the
proposed switched median filter for the target device
XC3s5000-5FG900 given in table1. the first row
illustrates the number of slices utilized by the proposed
algorithm. The proposed architecture requires 3269
slices for implementation after synthesis. The second
row illustrates the number of 4 input look up table
required by the proposed algorithm for implementation
and it requires 2800 4 input look up table. Row ten of
the table 1 gives the number of slices required by the
proposed algorithm after place and route. The proposed
architecture required 2800 slices for the logic. The row
eleven illustrates the minimum period which is 4.26ns.
The proposed logic works at 233.318 MHz. with the
input arrival time of 219.208ns and a maximum output
required time after clock is 7.165ns. The last row
illustrates the low power required by the architecture
which is 100mw. From the figure 4,56 we conclude
the proposed logic requires 3269 slices, 5209 four input
look up tables (After synthesis) and 2800 slices (after
place and route) which is very less when compared to
the other compared architectures. From the figure 7 we
understand the minimum period required by the
proposed logic is 4.286ns which is optimum when
compared with the other architectures that are
compared. Figure 8 it is evident that the operating
frequency of the proposed logic is an optimum 233.318
MHz when compared to the other decision based
sorting techniques discussed here. Figure 9 illustrates

Vasanth : VLSI Architecture of Decision based Modified Selection

the proposed architecture requires100mw. The required

power

is very less when compared to other

architectures. From the table and the graph we
conclude that a reduced area, low power architecture
with optimum speed is proposed.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

Oflazer K., 1983, “Design and implementation of a
simple chip ID median filter, “lEEE trans on acoustics,
speech and signal processing, Assp-30, pp1164-1168.

Fisher A., 1982, “Systolic Algorithm for running order
statistics in signal and image” , Digital system, volume
4, pp 251-264.

Hwang J.N. et al. 1990, “Systolic architecture for 2-D
rank order filtering , “Proc International conference
Application specific Array processor, pp-90-99.

Kung S.Y. 1989 “VLSI Array Processor’, prentice
Hall,.

Karaman M., Onural L., Atalar A., 1988, “Design and
implementation of general purpose median filter in
VLSI,” VLSI signal processing Ill, pp 111-119.

Lucke L., :Parli K., 1992, “Parallel Structures for rank
order & stack filters”, Proc IEEE international
conference. circuits & systems,.

Richards. D.S., Jan 1982 “VLSI Median Filters”, IEEE
Computer, volume. 15, no.1,.

[8]Lee. C.L. and Jen C.W., Feb 1992 “Bit-sliced median

[9]

[10]

[11]
[12]

[13]

[14]

filter design based on a majority gate”, IEE proc-G V
139 no.1, pp.63-71,.

Offen. J. and Raymond R., 1985. “VLSI Image
Processing”, McGraw-hill,

Fisher. A.L., Systolic Algorithms for Running Order
Statistics”, in signal and image processing, Dept. of
Computer Science, Carnegie Mellon University,
Pittsburgh, Jul.1981.

Kung. H.T., Jan 1982 “Why Systolic Architectures’,
IEEE Computer, vol. 15, no.1,.

Batcher. K.E., “Sorting Network and their applications”,
Proc. AFIPS Conf. Vol. 32, pp.307-314 (1968).

Stone. H.S.,1971 “Parallel Processing with the perfect
Shuffle,” IEEE Trans. Computer. Vol. C-20, No.2,
pp.153-161.

Preparata. F.P.,1978 “New Parallel Sorting Schemes,”
IEEE Trans. Computer, Vol.C-27, No.7, pp.669-673.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

51

Horiguchi. S. and sheigei Y., 1986). “Parallel sorting
algorithm for a linearly connected multiprocessor
system”, Proc. Intl Conf.Distributed computing
systems, pp.111-118.

Thompson. C.D. and Kung H.T., 1981 “sorting on a
mesh-connected parallel computer,” Comm. ACM,
vol.20, pp.151-161.

Nassimi. D. and Sahni S., 1979 “Bitonics sort on a
mesh-connected parallel computer”, IEEE Trans.
Computer, volC-27, pp.2-7

Srinivasan . K.S. et al., 2007. A New Fast and Efficient
Decision- Based Algorithm for Removal of High-Density
Impulse Noises, IEEE Signal Processing Letters,
Vol.14, No.6,.

Vasanth K., Karthik. S., “A New class of decomposition
algorithm for the reduction of low density impulse
noise”, international conference on ARTCOM2009,
kerala, India, pages 203-207.

Vasanth K., Karthik. S., “A switched Algorithm using
modified selection sort for the reduction of impulse
noise”, ICTACT international journal on Image and
video processing, Vol1, issuel, pages 57-64.

Vasanth K., Karthik.S., “Performance Analysis of
modified decomposition filter for non identical noises”,
ICTACT international journal on Image and video
processing, Vol1, issue2, pages 105-115.

Vasanth K., Karthik.S., “FPGA implementation of
modified decomposition filter”, international conference
on Signal and image processing, RMD Engg college,
Tamilnadu, India

Vasanth K., Karthik S., Preetha mol.P, “Hybrid
cascaded algorithm for impulse noise removal’,

National conference on CSE,NCSE2010, Sathyabama
university, Tamilnadu, India,pages 132-136

Vasanth K., Karthik.S., “ A Study of median filter and
its variants for impulse noise removal’, National
conference on E.E.E,NEEE-2010, Sathyabama
university, Tamilnadu, India.

Vasanth K., Karthik S., Nirmal raj S., Preetha mol.P,
“FPGA implementation of optimized sorting networks
for median filter” INTERACT-2010,International
conference on Robotics and automation”, Sathyabama
university, Tamilnadu, India

