International Journal on Information Sciences & Computing, Vol. 6 No. 2 July 2012 73

SECURED DATA DELETION IN CLOUD BASED MULTI-TENANT DATABASE
ARCHITECTURE

Vanitha Muthusamy1, Kavitha C.2

'Research Scholar, Anna University of Technology, Coimbatore, India
%Proffessor, Department of Computer Science, K.S.R College of Technology, Thiruchengode, India
Email:1vanitha_amara@yahoo.co.in

Abstract

Cloud Computing is evolving from a mere “storage” technology to a new vehicle for Business Information Systems (BIS)
to manage, organize and provide added-value strategies to current business models. Cloud platform server cluster is
running in the network environment and it may contain multiple users’ / tenants data and the data may be scattered in
different virtual data centers. In a multi-user shared cloud computing platform users are only logically isolated, but data
of different users may be stored in same physical equipment. These equipments can be rapidly provisioned, implemented,
scaled up or down and decommissioned. Current cloud providers do not provide the control or at least the knowledge
over the provided resources to their customers. When the SLA between the customer and the cloud provider ends, today
in no way it is assured that the particular customers’ data is completely destroyed or destructed from the cloud provider's
storage. In this paper we explore the key implementation patterns of data storage and methods to identify individual

customer data and securely delete / destruct it.

Key words: Multi-tenant Database, Cloud Computing, Data Lifecycle, Encryption, Cryptography, Meta-data

I. INTRODUCTON

The data in cloud is encrypted during rest, transit
and back-up in multi tenant storage. The encryption
keys are managed per customer. There are different
stages of data life cycle Create, Store, Use, Share,
Archive and Destruct. In multi tenant shared database
architecture, the final stage is overlooked most of the
times, but which is the complex stage of data in cloud.
Data retention assurance may be easier for the cloud
provider to demonstrate while the data destruction is
extremely difficult. If the data is not properly deleted,
because of the cloud characteristics of pooling and
elasticity the resources allocated to one user will be
reallocated to a different user at a later time. For
memory or storage resources, it might therefore be
possible to recover data written by a previous user.
The physical data destruction at the end of SLA is also
not possible since the disk / data storage device is
possibly used by other users. The proposed method
identifies way to track individual customers’ data and
their encryption keys and provides solution to
completely delete the data from the cloud provider's
multi-tenant shared storage architecture. This method
will also help customer to effectively locate and isolate
a particular customer's data through proper identity
management (as there is a possibility of data
commingling) and completely remove or render it. It
also ensures deletion of data copies as there are

always possibilities of more than one copy of data
being maintained for back-up purposes. The data
destruction proof shall also be provided to customer
making sure that the owner's data is completely
removed.

IIl. SERVICE ORIENTED CLOUD COMPUTING
DATABASE ARCHITECTURE

In a multi-user shared cloud computing platform
users are only logically isolated, but data of different
users may be stored in same physical equipment.
These equipments can be rapidly provisioned,
implemented, scaled up or down and decommissioned.
There are varying degrees of data isolation for a
multi-tenant application database architecture that
ranges from an isolated environment to a totally shared
environment. Implementation patterns along this
spectrum include three models

A. Dedicated database
Each tenant owns a separate database

B. Dedicated table/schema

Multiple tenants shares the same database, but
each tenant owns their separate tables/schema

74

C. Shared table/schema

Multiple tenants shares same database, tables
and schema. In this pattern, records of all tenants are
stored in a single shared table sets mixed in any order
in which a tenant ID column is inserted in each table
to associate the data records with the corresponding
tenants.

ll. DATA STORAGE PATTERN IN SHARED
TABLE /SCHEMA STRUCTURE

In case of dedicated database or table/schema
the tenants have their separated schemas. The
changes of the data model of one tenant can be made
directly to its specific database/tables without impact to
other tenants. But in case of share table/schema
structure because of the sharing of schema, it can only
support data field extension in which flexibility degree
is usually measured by the maximal number of
extension fields. In this kind of storage pattern because
of the sharing of schema, it can only support data field
extension. The flexibility degree is usually measured by
the maximum number of extension fields.

International Journal on Information Sciences & Computing, Vol. 6 No. 2 July 2012

We are going to discuss about different data
storage pattern in a multi-user shared database
environment for a pre-sales application

Reserved / Fixed Columns pattern: The following
figure shows a single table that supports multiple
tenants. Here the number of columns is fixed. Hence
the flexibility is the very less. Most cloud providers don't
use this kind of storage. This kind of storage can fit
for simple sales applications that run with in the same
country where the customer as well as the service
provider resides. Table 1. Shows example of this
pattern

Extension / Sub-Table pattern: But when the
complexity grows and when there is a need for
supporting multiple countries, tenants may need to
support customers from different countries. In order to
support additional tables / columns and also increased
performance, data can be stored across different
sub-tables. The main table and sub tables can be
related with key columns. Table 2 and Table 3 shows
one such sample implementation.

Table 1. QUOTE_WITH_DETAILS

ROW_ID |TENANT_ ID |CUSTOMER_ ID |QUOTE ID |QUOTE_NAME [QUOTE_AMT [QUOTE_START _DATE | QUOTE_COUNTRY
1ASFWF [Tenant_1 Customer_1 1-AB167DG | Quote 1234.00 12-10-2011 INDIA
1ASFAF [Tenant_1 Customer_2 1-AB167DL | Quote_2 null AUSTRALIA
1AVWF [Tenant_1 Customer_3 1-AB167CV | null 5674 null ARGENTINA
1ASFLF [Tenant 2 SINGAPORE
1ASFQF |[Tenant_2 MALAYSIA
1ASLWF [Tenant_2 Customer_n 1-AB167XX | String1 1111.23 12-11-2011 CANADA
Table 2. QUOTE_MAIN

ROW_ID TENANT_ ID CUSTOMER_ ID QUOTE_ ID QUOTE_DETAILS_ROW_ID
1ASFWF Tenant_1 Customer_1 1-AB167DG 1LPOMI
1ASFAF Tenant_1 Customer_2 1-AB167DL 1HPOMI
1AVWF Tenant_1 Customer_3 1-AB167CV 1KPOMI
1ASFLF Tenant_2 1LPNMI
1ASFQF Tenant_2 1RPOMI
1ASLWF Tenant_2 Customer_n 1-AB167XX 1LPNMI

Table 3. QUOTE_DETAILS
ROW _ID [TENANT_ID |QUOTE_ID |QUOTE_NAME |QUOTE_TOTAL_AMT |QUOTE_START _DATE [QUOTE_DISCOUNT
1LPOMI Tenant_1 1-AB167DG 12-10-2011
1HPOMI Tenant_1 1-AB167DL
1KPOMI Tenant_1 1-AB167CV null
1LPNMI Tenant_2
1RPOMI Tenant_2
1LPNMI Tenant_2 1-AB167XX 12-11-2011

Vanitha Muthusamy et al. : Secured Data Deletion in Cloud Based Multi-tenant... 75

IV. UNIQUE CHANLLENGES OF MULTITENANT
DATABASE

Possibilities of one tenant accessing other
tenants’ data through a malicious request One tenant
customizing various schema objects in real time can
affect the functionality or availability of the system for
all other tenants Possibilities of data updating (insert,
modify or delete) of one tenant affecting the data of
other tenant. Scaling up of systems response time
when more tenants start to use the database in a
multi-tenant environment.

Identifying and deleting a single tenant data when
closing the account (data, meta-data and crypt keys).

V. MULTI-TENANT DATABASE SETUP

Its difficult to create a statically compiled
database engine executable that can meet the unique
challenges of multitenancy. Instead, a multitenant
cloud-oriented database system must be dynamic in
nature, or polymorphic, to fulfil the individual
expectations of various tenants and their users. In order
to accomplish this, the multi-tenant storage model
manages virtual database structures using a set of
metadata, data, data encryption and pivot tables

A. MULTI-TENANT META-DATA

Any cloud database model will have two core
internal tables that it uses to manage metadata that
corresponds to a tenant's schema objects one for
storing Multi-tenant objects and other for storing
Multi-tenant fields.

The MultiTenant_Objects system table stores
metadata about the tables that an tenant defines for
an application, including a unique identifier for a object
(ObjID), the tenant (TenantID) that owns the object, and
the name given to the object (ObjName).

The MultiTenant_Fields system table stores
metadata about the fields (columns) that an tenant
defines for each object, including a unique identifier for
a field (FieldID), the tenant (TenantID) that owns the
encompassing object, the object that contains the field
(ObjID), the name of the field (FieldName), the field’s
datatype, a Boolean value to indicate if the field
requires indexing (Isindexed), and the position of the
field in the object relative to other fields (FieldNum).

B. MULTI-TENANT DATA

The multi tenant system table stores the
application-accessible data that maps to all tenant
specific tables and their fields, as defined by metadata
in MultiTenant Objects and MultiTenant Field tables.
Each row includes the Tenant that owns the row
(Tenant ID), and the encompassing object identifier
(ObjID). Each row in the MultiTenant_Data table also
has a Name field that stores a “natural name” for
corresponding records; for example, an Customer
record might use “Customer Name,” a Case record
might use “Case Number,” and so on.

MultiTenant_Fields can use any one of a number
of standard structured datatypes such as text, number,
date, and date/time as well as special-use, rich
structured datatypes such as pick list (enumerated
field), auto-number (auto-incremented,
system-generated sequence number), formula
(read-only derived value), master-detail relationship
(foreign key), checkbox (Boolean), email, URL, and
others. MultiTenant_Fields can also be required (not
null) and have custom validation rules (for example,
one field must be greater than another field), both of
which Database.com enforces.

C. MULTI-TENANT DATA ENCRYPTION

A way to further protect tenant data is by
encrypting it within the database, so that data will
remain secure even if it falls into the wrong hands.

Cryptographic methods are categorized as either
symmetric or asymmetric. In symmetric cryptography,
a key is generated that is used to encrypt and decrypt
data. Data encrypted with a symmetric key can be
decrypted with the same key. In asymmetric
cryptography (also called public-key cryptography), two
keys are used, designated the public key and the
private key. Data that is encrypted with a given public
key can only be decrypted with the corresponding
private key, and vice versa. Generally, public keys are
distributed to any and all parties interested in
communicating with the key holder, while private keys
are held secure. For example, if Alice wishes to send
an encrypted message to Bob, she obtains Bob’s public
key through some agreed-upon means, and uses it to
encrypt the message. The resulting encrypted
message, or cyphertext, can only be decrypted by
someone in possession of Bob’s private key (in
practice, this should only be Bob). This way, Bob never

76 International Journal on Information Sciences & Computing, Vol. 6 No. 2 July 2012

has to share his private key with Alice. To send a
message to Bob using symmetric encryption, Alice
would have to send the symmetric key
separately—which runs the risk that the key might be
intercepted by a third party during transmission.

Public-key cryptography requires significantly
more computing power than symmetric cryptography; a
strong key pair can take hundreds or even thousands
of times as long to encrypt and decrypt data as a
symmetric key of similar quality. For SaaS applications
in which every piece of stored data is encrypted, the
resulting processing overhead can render public-key
cryptography infeasible as an overall solution. A better
approach is to use a key wrapping system that
combines the advantages of both systems.

With this approach, three keys are created for
each tenant as part of the provisioning process: a
symmetric key and an asymmetric key pair consisting
of a public key and a private key. The more-efficient
symmetric key is used to encrypt the tenant's critical
data for storage. To add another layer of security, a
public/private key pair is used to encrypt and decrypt
the symmetric key, to keep it secure from any potential
interlopers.

When an end user logs on, the application uses
impersonation to access the database using the
tenant’s security context, which grants the application
process access to the tenant's private key. The
application (still impersonating the tenant, of course)

can then use the tenant's private key to decrypt the
tenant’s symmetric key and use it to read and write
data

VI. SECURE DELETION OF TENANT DATA

When a contract between the tenant and the
provider ends, the provider must ensure that he deletes
all tenant related data such as Meta-data, Tenant data
and Encryption keys specific to tenant. Since all the
table has reference to tenant with Tenant_ID, deletion
should be carried over in all the affected table based
on the Tenant_ID.

ACKNOWLEDGEMENT

This work is supported by Center for Research,
Anna University of Coimbatore

REFERENCES
[1] Cloud_Computing_Use_Cases_Whitepaper-4_0, pp

[2] Seny Kamara, Microsoft Research, Cryptographic
Cloud Storage

[3] J. Brodkin. (2008, Jun.. “Gartner: Seven
cloud-computing security risks.” Infoworld, Available:
http://www.infoworld.com/d/security-central/gartner-sev
en-cloudcomputingsecurity-risks-853?page =0,1>
[Mar. 13, 2009].

[4] R. K. Balachandra, P. V. Ramakrishna and A. Rakshit.
“Cloud Security Issues.” In PROC ‘09 IEEE

International Conference on Services Computing, 2009,
pp 517-520.

	Page 1
	Page 2
	Page 3
	Page 4

