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Abstract

As the advance of wireless communication technology, it is quite common for people to view maps or get related services
from the handheld devices, such as mobile phones and PDAs. Here range queries, as one of the most commonly used
tools, are often posed by the users to retrieve needful information from a spatial database. In view of this problem, we
present a idea that a concise representation of a specified size for the range query results, while incurring minimal
information loss, shall be computed and returned to the user. Such a concise range query not only reduces communication
costs, but also offers better usability to the users, providing an opportunity for interactive exploration. The usefulness of
the concise range queries is confirmed by comparing it with other possible alternatives, such as sampling and clustering.
Unfortunately, we prove that finding the optimal representation with minimum information loss is an NP-hard problem.
Therefore, we propose several effective and nontrivial algorithms to find a good approximate result. Extensive experiments
on real-world data have demonstrated the effectiveness and efficiency of the proposed techniques.

Keywords —Spatial databases, range queries, algorithms.

I. INTRODUCTION

Spatial databases have witnessed an increasing
number of applications recently, partially due to the fast
advance in the fields of mobile computing and
embedded systems and the spread of the Internet. For
example, it is quite common these days that people
want to figure out the driving or walking directions from
their handheld devices (mobile phones or PDASs).
However, facing the huge amount of spatial data
collected by various devices, such as sensors and
satellites, and limited bandwidth and computing power
of handheld devices, how to deliver light but usable
results to the clients is a very interesting, and of
course, challenging task.

Our work has the same motivation as several
recent works on finding good representatives for large
query answers. General query processing for large
relational databases and OLAP data warehouses has
posed similar challenges. Query result in every possible
stage of a long running query evaluation.

For our purpose, light refers to the fact that the
representation of the query results must be small in
size, and it is important for three reasons.

First of all, the client-server bandwidth is often
limited. This is especially true for mobile computing and
embedded systems, which prevents the communication
of query results with a large size. This is especially
important when the query results have large scale.

Second, clients’ devices are often limited in both
computational and memory resources. Large query
results make it extremely difficult for clients to process,
if not impossible.

Third, when the query result size is large, it puts
a computational and I/O burden on the server. The
database indexing community has devoted a lot of
effort in designing various efficient index structures to
speed up query processing, but the result size imposes
an inherent lower bound on the query processing cost.

Usability refers to the question of whether the
user could derive meaningful knowledge from the query
results. Note that more results do not necessarily imply
better usability. The results (i.e., a large set of points)
shown on and overlap. It is hard to differentiate them,
let alone use Query Q with budget k asks for a concise
representation R of this information. In addition,
usability is often related to another component, namely,
query interactiveness that has become more and more
important. Interactiveness refers to the capability of
letting the user provide feedback to the server and
refine the query results as he or she wishes.

A Problem Definition

Motivated by these observations, this work
introduces the concept of concise range queries, where
concise collectively represents the light, usable, and
interactive requirements laid out above. Formally, we
represent a point set using a collection of bounding
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boxes and their associated counts as a concise
representation of the point set.

Definition 1: Let Pbea set ofnpointsiniR. Let
P={P1,..., Pk }g be a partitioning of the points in
P into k pair wise disjoint subsets. For each subset
Pi; let Ri be the minimum axis-parallel bounding box
of the points in Pi Then, the collection of pairs
R={(R1,\P1\), ..., (Rk,\Pk\)} is said to be a
concise representation of size k for P, with P as its
underlying partitioning.

We will only return R as a concise representation
of a point set to the user, while the underlying
partitioning P is only used by the DBMS for computing
such an R internally. Clearly, for fixed dimensions, the
amount of bytes required to represent R is only
determined by its size k.

Definition  2: For a concise representation
R={R1, \P1\), ..., (Rk \ Pk\)} of a point set P, its
information loss is:

/
L(A= Y Ri-ox+Ri-oylxl

i=1

where Rj, 0 x and Ri: 0 y denote the x-span and y-span
of Ri, respectively, and we term Rj, 0 x+ Ri, 0 y as the
extent of Ai.

Definition 3: Given a large point set P in IR, a
concise range Queru Q wotj bidget k asks for a concise
representation R of Size k with the minimum
information loss for the point set PNQ.

We can also fix the information loss L and seek

for a concise representation with a minimum k (the size
of the output),
Definition 4: Given a large point set P in /IR, a
complement concise range query @ with budget. L asks
for a concise representation R of a minimum size, i.e.,
minimum &, for the point set P Q with information
loss L(R) <L

We will focus on Definition 3 and discuss the
proposed solutions to complement concise range
queries.

B.  Summary of Contributions

The goal of a concise range query is to find a
Concise representation, with the user-specified size, for

all the points inside the query range. We first give a
dynamic programming algorithm that finds the optimal
solution in one dimension in Section 3.1. This
optimization problem in two or more dimensions is
NP-hard. In Section 3.2, we present a nontrivial
reduction from PLANAR 3-SAT to the concise
representation problem and prove its NP-hardness.

Thus, in Section 3.3, we focus on designing
efficient yet effective algorithms that find good (but not
optimal) concise representations.

Then, in Section 4, we explore how to speed up
query processing by using an existing R-tree built on
the data set P. We present an adaptive R-tree traversal
algorithm that is much more efficient than answering
the query exactly, and also produces high-quality
concise representations of the query results. We
discuss some extensions of concise range queties in
Section 5. In Section 6, we demonstrate the
effectiveness and efficiency of the general solution that
can be applied on any type of queries.

proposed techniques with extensive experiments
on real data sets. A survey of related works appears
in Section 7 before concluding the paper.

II. LIMITATION OF OTHER ALTERNATIVES

A. Clustering Techniques

There is a natural connection between the
concise range query problem and the many classic
clustering problems, such as k-means, k-centers, and
density-based clustering. For existing clustering
problems, one could return, instead of the actual
clusters, only the “shapes” of the clusters and the
numbers of points in the clusters. This will deliver a
small representation of the data set as well. Consider
the example in Fig. 1, which shows a typical distribution
of interesting points (such as restaurants) near a city
found in a spatial database. we suppose the user has
a budget k=3 on the concise representation. The
result of using the modified k-means approach is shown
in Fig. 1b. Here, we also use the bounding box as the
“shape” of the clusters. Thus, in this example, this
function will be dominated by the downtown points.

This process stops when the cluster cannot grow
any more. This technique, when applied to our setting,
has two major problems. First, we may not find enough
clusters for a given. In this example, we will always
have only one cluster. Second, the clusters are quite
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sensitive to the parameter. Finally, we omit the result
from k-centers. Hence, we need to look for new
algorithms to the concise range query problem.

B. Histogram:

Our work is also related to histogram
construction. Specifically, a histogram consists of
several buckets, each of which stores the frequency of
data points in it. The histogram has been widely used
as a tool for selectivity estimation.

C. Random Sampling:

Random sampling is another tempting choice, but
it is easy to see that it is inferior to our result in the
sense that, in order to give the user a reasonable idea
on the data set, a sufficient number of samples need
to be drawn, especially for skewed data distributions.
Indeed, random sampling is a very Our work is exactly
trying to exploit these nice spatial properties, and
design more effective and efficient techniques tailored
for range queries.

. THE BASE ALGORITHMS

In this section, we focus on the problem of finding
a concise representation for a point set P with minimum
information loss. First in Section 3.1, we show that in
one dimension, NP-hard in two dimensions as we show
in the Section 3.2. In Section 3.3 for two or higher
dimensions.

A Optimal Solution in One Dimension:

We first give a dynamic programming algorithm
for computing the optimal concise representation for a
set of points P lying on a line. Let P1, ..., Pn be the
points of P in sorted order. Let Pij represent the
optimal partitioning underlying the best concise
representation

Lemma 1: Pjj for i=n;j<k and i=j assigns
P, ... Piinto j no overlapping groups and each group
contains all consecutive points covered by its extent.
Proof: We prove by contradiction. Suppose this is not

the case and Pi;j contains two groups P1 and P2 that
overlap in their extents as illustrated.

Theorem 1: In one dimension, the concise
representation with the minimum information loss for a

set of points P can be found in O(kr12) time.
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B. Hardness of the Problem in 2D:

Not surprisingly, like many other clustering
problems, for a point set P in IR, the problem of finding
a concise representation of size k with minimum
information loss is NP-hard. In the classical 3-SAT

problem, there are n Boolean variables X1, ..., Xn and
m clauses Ci,...,Cm, where each clause is a
disjunction of three variables or their negations.

Algorithm 2: The algorithm [Group
U« P;
s «— number of seeds to try;

Lbea!.—oc:
U'—U;
forj=1,...,sdo
U« U
ps +— randomly chosen seed from U;
P « {n,}:
U«—U-{p:}

while irue do
Let p — argmin, L(P/ U {p});
if L(P U {p}) < L(P]) then
P{— P/ U {p}i
U—U-—{ph
| else break:
if L(P!) < Lsest then
Fpear < L(P));
| Py Fj;
U—U- P.'_,'
| output F;

Fig. 1. IGroup Algorithm

First, one can verify that the constructed point
set P has The following properties:

Property 1: The |1 distance between any two
consecutive points in any chain is 0.1, while the
distance between any other pair of points is >0:1.

Property 2: The bounding box for a clause point and
the two contacting points from one of its joining chains
have extent 0.19.

Property 3: The extent of the bounding box is
>0.24 for any four. Points, >0.32 for any five points,
>0.36 for any six points, and =0.38 for any seven
points.

Lemma 2: L (Ropt)=0.2k,0.37m, and the lower
bound can be attained only if each clause point is
grouped together with the two contacting points from
one of its joining chains, while each of the remaining
points in P is grouped together with one of its adjacent
neighbors in its chain.
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Proof: which can be found on the Computer Society
Digital library at
http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.
35.

Lemma 3: The PLANAR 3-SAT instance has a
satisfying assignment if and only if
L (Ropt =0.2k+0.37 m

Proof: which can be found on the Computer Society
Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.
35.

The following hardness results is an immediate
consequence of Lemma 3:

Theorem 2: Given a point set PC I and an integer
k, the problem of finding a concise representation A of
size k for P with the minimum information loss is
NP-hard.

| [ ]

4 S = v

Fig. 2. The third-order Hilbert curve in two
dimensions.

C. Heuristics for Two or More Dimensions:

Thus, in this section, we try to design efficient
heuristic algorithms that produce an R with low
information loss, although not minimum. Since our
problem is also a clustering problem, it is tempting to
use some popular clustering heuristic, such as the
well-known k-means algorithm, for our problem as well
as shown in Fig. 2.

1. Algorithm HGroup:
Given the optimal algorithm in one dimension, a

straight-forward idea is to use a function IR — IR to
map the points of P from higher dimensions down to

one dimension. Our Hilbert-curve based algorithm,
called H Group, is shown in Algorithm 1.

Algorithm 1: The algorithm HGroup more direct
algorithm in Compute the Hilbert value h (Pi) for each
point Pie P; Sort P by h(Pj and map it to one
dimension; Find the partitioning P using dynamic
programming; Build the concise representation R for
P and return;

2. Algorithm IGroup:

More direct algorithm in two or more dimensions.
It is an iterative algorithm that finds the k groups
P1;...; Pk one at a time. We call this algorithm
IGroup. We give the details of the complete algorithm
IGroup in Algorithm 2. as shown in Fig. 1. There are
k—1 iterations in the algorithm. In each iteration, we
check each of the n points and choose the best one
to add to the current group. In the worst case, we could
check all the points O(n) times. Each iteration needs
to be repeated for s times with s randomly chosen
seeds. So the worst case running time of IGroup is
O (skn).

IV. QUERY PROCESSING WITH R-TREES

In order to use the algorithms of Section 3.3 to
answer a concise range query Q with budget k from
the client, the database server would first need to
evaluate the query as if it were a standard range query
using some spatial index built on the point set P,
typically an R-tree.

The algorithms presented in this section in
general work with any space partitioning index
structure, for concreteness, we will proceed with the
R-tree as shown in Fig. 3.
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Fig. 3. R-tree
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A. Basic Ildeas:

For brevity we will also say a point is the MBR
of itself. The basic idea of our R-tree-based algorithms
is to evaluate @Q in a way similar to a standard range
query. However, on the other hand, since the primary
goal of the R-tree is fast query processing, the MBRs
do not constitute a good concise representation of the
query result. overlapping among the Ris is often
necessary and beneficial for reducing the information
loss.

B.  Algorithm R-BFS:

The straightforward way to find k such MBRs is
to visit the part of the R-tree inside @ in a BFS manner,
until we reach a level where there are at least o k
MBRs. In particular, for any node u whose MBR is
complete inside Q, while the associated count is
estimated as assuming uniform distribution of the points
in MBR(u) and Q, while the associated count is
estimated as shown in equ 1.

. Area (MBR (u)) N Q) . (1)
Nu Area (Q)

C. Algorithm R-Adaptive

The above BFS traversal treats all nodes alike in
the R-tree and will always stop at a single level. But,
intuitively, we should go deeper into regions that are
more “interesting,”

i.e., regions deserving more user attention. In the
algorithm R-Adaptive, we start from the root of the

Algorithm 3: Recursive call visit(u, k)

Let uy,...,up be u's children whose MBRs are
inside or partially inside @Q;
Let n; = number of points inside MBR(u;)N(;
if b > « then
output MBR(1;)NQ with n; for all ;
L return;
Let A; = Area(MBR(1;)NQ);
Compute k; asin (9) forall i =1,....b;
fori=1,...,bdo
if k; =1 then
| output MBR(u;)NQ with n;;
else
| visit(ui, Ki);

Fig. 4. Recursive call
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R-tree with an initial budget of kK=o k and traverse
the tree top-down recursively. It now remains to specify
how we allocate the budget into Ki,...,Kb. The
procedure of the recursive call visit(u, k) is outlined in
algorithm 3 as shown as fig 4.

D. The Weighted Versions of the Base Algorithms:

Our R-tree-based algorithms generate a number
of MBRs, associated with counts, and pass them to
the base algorithms of Section 3.3. As described, those
algorithms can only process a point set. But, it is not
difficult to adapt both HGroup and IGroup to handle a
set of MBRs associated with counts (weights).

E. Discussions on the Shape of Query Region:

We always assume that the query region Q is
an axis-parallel rectangle. In the case where the query
region Qg-R—BFS and R-Adaptive, with minor
modifications has other shapes. By other estimation
techniques such as histograms or sampling. Similarly,
for R-Adaptive, we also need to consider the
intersection between MBR(u) and Q of any shape.

F. Discussions on Other Spatial Data Types:

We now discuss how to extend our solutions of
answering concise range queries on data points to that
on other spatial data types such as lines or rectangles.
Our extension of concise range queries on lines or
rectangles can be as follows: First, we bound
lines/rectangles with minimum bounding rectangles
(MBRs). Then, we index the resulting MBRs in an
R-tree structure by using the standard “insert” operator.
For any specified concise range Q, we can conduct
the concise range query on such MBRs via R-tree in
the same way as that over data points.

V. EXTENSIONS

A. Supporting Attributes:

As we emphasized in Section 1, it is often useful
if we can associate multiple counts with each bounding
box, each of which represents the number of points
with a particular attribute value, for example, Italian,
Chinese, and American restaurants are referred in fig
5.

B. Complement Concise Range Queries:

As we mentioned in Section 1, the user may also
be interested in asking a complement concise range
query. The larger k is, the smaller the information loss
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is. Thus, we can conduct a binary search on £ to find
the minimum k that satisfies the user's requirement.
This is not surprising, since the complement concise
range query problem can be also shown to be NP-hard
following our proof for the primary problem.

C. Progressive Refinement:

Another useful yet simple extension of our
algorithms is to support progressive refinement of the
concise representation. In this case, the user with a
slow network connection does not specify a k before
hand.

VI. EXPERIMENTS

A.  Experimental Setup:

We have implemented our two base algorithms,
HGroup and IGroup. Specifically, we used the R*-tree
to index all the points in the data set. R-BFS -+ IGroup,
R-BFS + HGroup, R-Adaptive + IGroup, and
Radaptive + HGroup.

B. Data Sets:

We tested the query performance of our
approaches over three real data sets, road networks
from North America (NA), California (CA), and City of
San Joaquin County (TG), and one synthetic data set,
Skew. Specifically, for real data sets, NA and CA are
from digital chart of the world server, whereas TG is
from. The figures 6 and 7 shown the experimental
results of CA, NA and TG.

@) (b)

C. Visualization of Resuilts and Interactive
Exploration:

We first did some test queries to see if the
concise representation indeed gives the user some
intuitive high-level ideas about the query results.
Starting from here, the user can interactively narrow
her query down to areas of her interests, such as
high-density areas or areas with medium density but
closer to locations of interest

D. Experimental Results with Different Approaches:
We now compare six approaches R-BFS IGroup,

R-Adaptive+ IGroup, R-BFS +HGroup, R-Adaptive+
HGroup, k-means, and MinSkew.

E. Experimental Results with Varying k

Next, we started to look into the performance of
these six algorithms. In the first set of experiments, we
fixed the query size at 0.1x0:1,00=8, and varied
k from 20 to 100. Figs. 10a, 10b, and 10c present
experimental results on synthetic Skew data set,
comparing the six approaches, we will only report the
results with our four algorithms R-BFS + IGroup,
R-Adaptive+IGroup, R-BFS + HGroup, and R Adaptive
+ HGroup. We next investigate the trend of our
approaches for different k values on CA data set in
Fig. 9. The show data set is shown in figures 8. 11,
13 and 14.

F. Experimental Results with Varying o

In the second set of experiments, we fixed the
query size at 0.1 x0.1, k=60, and varied a from 2 to
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Fig. 5. Supporting Attributes



41

: Concise Range Queries.

Srikanth et al.

N 0 o [¥e) A_U
g 8 8 8
[=} S & =]
s g o S8
SSO| uoreulojuj

BB TR R
Bs29e388 2555555
205202052020 520 2002252022523,

@)

0.00015

0.0001
00005

=
$SO| LUoewIojy|

1000

(soes) awn NdD

()

} } Q\VO&\
§ 8388 ° s
S @ S &g Vo
s © S © 1 4
o o
$S0| UOEULIO|
Y
/3
1 %, G
o2
2883g8°
© 3 S5 S Q%,%
S50] UOIEWIO|

©

©

Fig. 6. Experimental results with different
approaches on the CA data set. (a) /O cost.
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32. In Fig. 10, we plot the 1/O cost, CPU time, and
information loss for the four algorithms on the CA data
set. The trends on the 1/O cost and CPU time in this
set of experiments are similar to those in the
experiments with varying k.The experimental results are
similar to that of CA. We do not show the similar
results on NA and TG data sets here due to space
limit.

G. Experimental Results with Varying Query Size

The results on I/O cost, CPU time, and
information loss on the CA data set are shown in Fig.
12. First, similar to the previous two sets of
experiments, the 1/O cost of the algorithms increases
as the query range gets larger.

In terms of CPU time, the trend is similar, i.e.,
all the algorithms take longer to run as the query gets
larger. Therefore, in practice, if small response time is
strictly required. We can see that the trend of our
approaches on objects of rectangular shape is similar
to that of point data sets.

VIl. RELATED WORK

The motivation of this work is very similar to the
recent work of Jermaine et al. The focus f produce
approximate results for long-running join queries in a
relational database engine at early stages of the query
execution process. The “approximation” defined there
is a random sample of the final results. Density based
clustering approaches, such as CLARANS and
DBSCAN are another popular clustering definition. Our
work is also related to the data summarization
techniques such as histogram Specifically, Finally,
sampling-based techniques could be applied to derive
concise representations for the results of range queries.
The NP-hardness result for two dimensions, the IGroup
algorithm, the R-tree-based algorithms, the extensions,
as well as the experiments, are all new in this paper.

VIll. CONCLUSION

A new concept, that of concise range queries,
has been proposed in this paper, which simultaneously
addresses the following thre First, it reduces the query
result size significantly as required by the user. e
problems of traditional range queries. Second, although
the query size has been reduced, the usability of the
query results has been actually improved. Finally, we
have designed R-tree-based algorithms so that a
concise range query can be processed much more
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efficiently than evaluating the query exactly, especially REFERENCES
in terms of 1/O cost. The concept of concise range [1] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting
queries is quite general. Stars: The k Most Representative Skyline Operator,”
Proc. Intl Conf. Data Eng.(ICDE), 2007.
One can imagine that it could naturally extend to [2] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra,
deal with moving objects uncertainty and fuzziness in “Scalable

data etc. However, designing efficient and effective
query processing algorithms for these types of data
remains a challenging open problem.



