SOFTWARE COST ESTIMATION MODELS USING ELMAN NEURAL NETWORKS

Praylinin E1, Latha P2.

Government college of Engineering, Tirunelveli, India
Email: 1praylinin25@gmail.com, 2latha.muthuraj@yahoo.com

Abstract

Software cost estimation involves the estimation of cost required to develop a software. Cost overrun, schedule overrun occur in the software development due to the wrong estimate made during the initial stage of software development. So proper estimation is very essential for successful completion of software development. Lot of estimation techniques available to estimate the effort in which neural network based estimation method play a prominent role. ELMAN neural network a recurrent type network can be used to estimate the cost. For a good predictor system the difference between estimated cost and actual cost should be as low as possible. To control better the time, cost and resource assigned to software project, organization need proper estimate of their size even before the project actually start. The development of a software system is an inherently complex process Estimating the cost needed to run a large software development project is doubly so and notoriously difficult.

Keywords: ELMAN Network, Mean Magnitude of Relative Error (MMRE),

I. INTRODUCTION

Estimating software development cost remains a complex problem, and the one which continues to draw significant research attention and it is very difficult to achieve accurate estimates[9,12]. Software project managers usually estimate the software development effort, cost and duration in the early stages of a software life cycle in order to appropriately plan, monitor and control the allocated resources. Correctness in estimating the required software development effort plays a critical factor in the success of software project management Right amount of resource should be allocated to a project[11]. If too much of resource is allocated to the project to is called as overestimation. If insufficient resource is allocated to the project is called underestimation. Software development activity involves lot of uncertainties the requirement will change, the developing platform will change, the developers capability to vary from one person to another lot of uncertainties are involved in the contributing factors which decides the effort required to develop the software. Hence soft computing frame work can be used that are good in handling the uncertainty. For good software estimation tool the estimated effort should be equal to the actual effort. Accurate estimation allows manager to allocate the resource to plan and coordinate all activities.

Accurate Software cost estimation is always a difficult task. Estimation by experts, analogy-based estimation and soft computing methods are some of the effort estimation methods. In estimation by experts, the entire project is subdivided into small activities and with previous experience in effort estimation the developer of software estimate the effort depending on the type of task under consideration [8]. In analogy based estimation is a form of CBR. Cases are defined as abstractions of events that are limited in time and space [13].In soft computing based approach several technique like neural network fuzzy logic, genetic engineering are used either individually or combine as hybrid approaches to predict the effort [6]. Soft computing based approach play a prominent role because the ability of the soft computing frame work to learn from previous projects especially neural network is good in learning. Now a day’s estimation method using neural network is the interesting area for research compared to Theoretical estimation methods [14]. While considering the neural network lot of neural network architecture are available. Among which the most widely used method was Back propagation network. Elman network is a type of recurrent network that is equally as important as Back propagation algorithm. In our experiment both methods are used for estimating software development effort and their performance characteristics are analysed.

The paper is organized as follows. Section 2 gives the detail about the related works and section 3 talks about the research methodology and the brief
description ELMAN neural network. Section 4 gives
detail about the dataset used. Section 5 gives detail
about the experimentation, section 6 about evaluation
criteria. Results and conclusion are given in section 7
and section 8 respectively.

II. RELATED WORKS

There are so many methods to estimate the cost
they are analogy based methods[5,15], Bayesian
methods[3,18]The use of Artificial Neural Networks to
predict software development effort has focused mostly
on the accuracy comparison of algorithmic models
rather than on the suitability of the approach for
building software effort prediction systems. Use of back
propagation learning algorithms on a multilayer
perceptron in order to predict development effort was
described by Witting and Finnie [20,19]. The study of
Karunanithi [10] reports the use of neural networks for
predicting software reliability; including experiments with
both feed forward and Jordon networks. The Albus
multiplayer perceptron in order to predict software effort
was proposed by Samson [16]. They use Boehm's
COCOMO dataset. Srinivasan and Fisher [17] also
exhibit the use of a neural network with a back
propagation learning algorithm. But how the dataset
was divided for training and validation purposes is not
clearly mentioned. Iris febine et al[7] compares
regression technique with artificial neural networks and
found artificial neural network to be better than
regression. Finally in the last years, a abundant interest
on the use of ANNs has grown, ANNs have been
fruitfully applied to several problem domains. They can
be used as predictive models because they are
modeling techniques having the capability of modeling
complex functions

III. RESEARCH METHODOLOGY

Problem Statement: Understanding and calculation
of models based on historical data are difficult due to
inborn complex relationships between the related
attributes, are unable to handle categorical data as well
as lack of reasoning abilities. Besides, attributes and
relationships used to estimate software development
effort could change over time and differ for software
development environments. In order to overcome to
these problems, a neural network based model with
accurate estimation can be used.

The COCOMO II model: The COCOMO model is a
software cost estimation model based on regression. It
was developed by Barry Boehm the father of software
cost estimation in 1981. Among all traditional cost
prediction models. COCOMO model can be used to
calculate the amount of effort and the time schedule
for software projects. COCOMO 81 was a stable model
on that time. One of the problems with using COCOMO
81 today is that it does not match the development
environment of the late 1990's.

Therefore, in 1997 COCOMO II was published
and was supposed to solve most of those problems.
COCOMO II has three models also, but they are
different from those of COCOMO 81. They are

- Application composition model-mostly
 suitable for projects built with modern
 GUI-builder tools. Based on new Object
 Points

- Early Design Model-To get rough estimates
 of a project's cost and duration before have
 determined its entire architecture. It uses a
 small set of new Cost Drivers and new
 estimating equations. Based on Unadjusted
 function Points or KSLOC

- Post-Architecture Model-The most detailed
 on the three, used after the overall
 architecture for the project has been
designed. One could use function points or
 LOC as size estimates with this model. It
 involves the actual development and
 maintenance of a software product
 COCOMO II describes 17 cost drivers that
 are used in the Post-Architecture model [2].
The cost drivers for COCOMO II are rated
on a scale from Very Low to Extra High in
the same way as in COCOMO 81. COCOMO
II post architecture model is given as:

\[
\text{Effort} = A \times [\text{size}]^B \times \prod_{i=1}^{17} \text{Effort Multiplier}_i
\]

Where

\[
B = 1.01 \times 0.01 \times \sum_{j=1}^{5} \text{Scale factor}_j
\]

\[A = \text{Multiplicative constant}\]

Size = Size of the software project measured in terms
of KSLOC (thousands of source lines of code, function
The selection of Scale Factors (SF) is based on the rationale that they are a significant source of exponential variation on a project's effort or productivity variation. The standard numeric values of the cost drivers are given in Table 1. The cost drivers and scale factors are given as input to the neural network with effort as the networks output. Two type of network used for analysis are discussed below.

A. Elman Network

Elman Network was first proposed by Jeffrey L. Elman in 1990. Elman neural network is feed forward network with an input layer, a hidden layer, an output layer and a distinct layer called context layer. A recurrent network is one in which there is a feedback from neuron’s output to its input. The input to the network is \(x_1, x_2, x_3 \ldots x_n \) and the output of the network is taken as \(y_1, y_2, y_3 \ldots y_n \). The output of the hidden layer (\(h_1, h_2, h_3 \ldots h_n \)) are feed back again to hidden layer neuron using context node (\(c_1, c_2, c_3 \ldots c_n \)). Unlike feed forward neural networks, Recurrent Neural Networks can use their internal memory to process arbitrary sequences of inputs. The output of each hidden neuron is copied into a specific neuron in the context layer. The value of the context neuron is used as an extra input signal for all the neurons in the hidden layer one time step later. In an Elman network, the weight from the hidden layer to the context layer are set to one and are fixed because the values of the context neurons have to be copied exactly as shown in Fig. 1.

![Fig. 1. ELMAN Network](image)

IV. DATASET DESCRIPTION

Here two types of datasets are used for analysis one is COCOMO dataset which is the historic project of nasa and Desharnais dataset, (i). COCOMO DATASETS

Dataset used for analysis and validation of the model can be got from historic projects of NASA. One set of dataset consists of 63 project and other consists of 93 datasets. The datasets is of COCOMO II format. In our experiment 93 datasets are used for training and 63 data is used for testing.

The Dataset need for training as well as testing is available in www.promisedata.org/?p=66 and in www.promisedata.org/?p=35. The dataset available is of COCOMO 81 format which is to be converted to COCOMO II by following the COCOMO II Model definition manual [1] and Rosetta stone [4]. COCOMO 81 is converted to COCOMO II. COCOMO 81 is the earlier version developed by Barry Boehm in 1981 and COCOMO II is the next model developed by Barry Boehm in year 2000. Some of the attributes like TURN are used only in COCOMO 81 and some new attributes like RUSE, DOCU, PCON, SITE are introduced in COCOMO II.

<table>
<thead>
<tr>
<th>Table I. Effort Multipliers and their Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effort Multipliers</td>
</tr>
<tr>
<td>Required software Reliability</td>
</tr>
<tr>
<td>Data base size</td>
</tr>
<tr>
<td>Product Complexity</td>
</tr>
<tr>
<td>Developed for Reusability</td>
</tr>
<tr>
<td>Documentation Match to Life-Cycle needs</td>
</tr>
<tr>
<td>Execution Time Constraints</td>
</tr>
<tr>
<td>Main storage Constraint</td>
</tr>
<tr>
<td>Platform Volatility</td>
</tr>
<tr>
<td>Analyst capability</td>
</tr>
<tr>
<td>Programmer capability</td>
</tr>
<tr>
<td>Personal continuity</td>
</tr>
<tr>
<td>Applications Experience</td>
</tr>
<tr>
<td>Effort Multipliers</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Platform Experience</td>
</tr>
<tr>
<td>Language and Tool</td>
</tr>
<tr>
<td>Experience</td>
</tr>
<tr>
<td>Use of software tool</td>
</tr>
<tr>
<td>Multisite Development</td>
</tr>
<tr>
<td>Required Development</td>
</tr>
<tr>
<td>Schedule</td>
</tr>
</tbody>
</table>

Table II. Scale factors and their range

<table>
<thead>
<tr>
<th>Scale Factor</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precededness</td>
<td>PREC 0.00 - 6.20</td>
</tr>
<tr>
<td>Development Flexibility</td>
<td>FLEX 0.00 - 5.07</td>
</tr>
<tr>
<td>Architecture/Risk Resolution</td>
<td>RESL 0.00 - 7.07</td>
</tr>
<tr>
<td>Team Cohesion</td>
<td>TEAM 0.00 - 5.48</td>
</tr>
<tr>
<td>Process Maturity</td>
<td>PMAT 0.00 - 7.80</td>
</tr>
</tbody>
</table>

Every input as Effort multiplier has been tuned by following the COCOMO II model definition manual [1]. The scale factor and Effort multiplier and their range is given in Table I and II. One of such inputs RELY can be discussed below in Table III:

The Rating levels are fixed by the developer. If the failure of the software causes slight inconvenience and the corresponding rating level is very low, then the effort multiplier is fixed to be 0.82. In case of some software failure can easily be recoverable then the corresponding rating level is Nominal and rating level is fixed to be 1. If the failure of the software causes risk to human life the rating level given by the developer is very high then the effort multiplier is fixed to be 1.26

Table III. Fixing Input attributes

<table>
<thead>
<tr>
<th>RELY Descriptor</th>
<th>Rating Levels</th>
<th>Effort Multipliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slight Inconvenience</td>
<td>Very Low</td>
<td>0.82</td>
</tr>
<tr>
<td>Low, easily recoverable loss</td>
<td>Low</td>
<td>0.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELY Descriptor</th>
<th>Rating Levels</th>
<th>Effort Multipliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate, easily, recoverable loss</td>
<td>Nominal</td>
<td>1</td>
</tr>
<tr>
<td>High financial</td>
<td>loss, High</td>
<td>1.1</td>
</tr>
<tr>
<td>Risk to Human life</td>
<td>Very High</td>
<td>1.26</td>
</tr>
</tbody>
</table>

(II) DESHARNAIS DATASET

Desharnais Datasets for experimentation purpose are available in the link: http://promise.site.uottawa.ca/SERepository/datasets/desharnais.arff. The dataset includes the parameters like Team exprience, Managers experience and totally eight input parameters and one effort. It totally consists of 77 projects and 62 is used for training and 15 is used for testing.

V. EXPERIMENTATION

Neural Network Uses two set of datasets One set of dataset consists of 63 projects and other consists of 93 datasets both are from the historic projects of NASA. Here we use 93 projects for training the network and 63 projects for testing. The simulation is done in MATLAB 10b environment. Elman network the weight and bias are randomly fixed so each time there is a possibility of getting different result to avoid this problem the whole network is made to run for 50 iteration and their errors are summed up.

The network designed uses only one hidden layer and that hidden layer has eight neurons and output layer has one neuron. The hidden layer uses sigmoidal transfer function. And output layer uses linear transfer function. The above consideration is used for ELMAN network for uniformity. Input fed to the neural network is normalised using Premnnmx and the output is DE normalised using postmnmx. Premnnmx normalises the value between (-1 to 1)

VI. EVALUATION CRITERIA

For evaluating the different software effort estimation models, the most widely accepted evaluation criteria are the mean magnitude of relative error (MMRE). Probability of a project having relative error less than 0.25, Root mean square of error, Mean and standard deviation of error.
The magnitude of relative error (MRE) is defined as follows

$$\text{MRE}_i = \frac{\text{actual effort}_i - \text{predicted effort}_i}{\text{actual effort}_i} \quad \ldots(1)$$

The MRE value is calculated for each observation I whose effort is predicted. The aggregation of MRE over multiple observations (N) can be achieved through the mean MMRE as follows

$$\text{MMRE} = \frac{1}{N} \sum_{i=1}^{N} \text{MRE}_i \quad \ldots(2)$$

$$\text{PRED}(25) = \frac{\text{MRE} \leq 0.25}{N} \quad \ldots(3)$$

Consider Y is the neural network output and T is the desired target. Then Root mean square error (RMSE) can be given by

$$\text{RMSE} = \sqrt{(Y - T)^2} \quad \ldots(4)$$

Error can be calculated by the difference between Y and T then mean and standard deviation is calculated by calculating the mean and standard deviation of the error

$$\text{ERROR} = (Y - T) \quad \ldots(5)$$

The standard deviation can be calculated by

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \quad \ldots(6)$$

The skewness of a random variable is the ratio of its third central moment μ_3 to the cube of its standard deviation σ. Skewness is denoted as Y_1.

$$Y_1 = \frac{\mu_3}{\sigma^3} \quad \ldots(7)$$

The kurtosis of a random variable is the ratio of its fourth central moment μ_4 to the fourth power of its standard deviation σ. Kurtosis is denoted as Y_2. Thus

$$Y_1 = \frac{\mu_4}{\sigma^4} \quad \ldots(8)$$

VII. RESULTS

Results of ELMAN for training and testing for Desharnais dataset is given in Table IV and the dataset for training and testing for COCOMO dataset is given in Table V. A model which gives lower MMRE is better than the model which gives higher MMRE. A model which gives high PRED(25) is better than the model which gives lower PRED(25). Similarly the model which gives lower RMSE is better than the model which gives higher RMSE. The model which mean and standard deviation is closer to zero is better than the models which gives mean and standard deviation far away from zero.

<table>
<thead>
<tr>
<th>Performance parameters</th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMRE</td>
<td>0.3392</td>
<td>4.59E-01</td>
</tr>
<tr>
<td>MSE</td>
<td>6.78E+06</td>
<td>2.36E+00</td>
</tr>
<tr>
<td>RMSE</td>
<td>2.60E+03</td>
<td>4.86E+03</td>
</tr>
<tr>
<td>PRED</td>
<td>43.5484</td>
<td>26.6667</td>
</tr>
<tr>
<td>Mean</td>
<td>4.83E+02</td>
<td>3.44E+03</td>
</tr>
<tr>
<td>Std.Dev</td>
<td>2.58E+03</td>
<td>3.55E+03</td>
</tr>
<tr>
<td>skewness</td>
<td>0.1115</td>
<td>0.5801</td>
</tr>
<tr>
<td>kurtosis</td>
<td>5.21</td>
<td>2.4652</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance parameters</th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMRE</td>
<td>0.3785</td>
<td>2.745</td>
</tr>
<tr>
<td>MSE</td>
<td>3.21E+05</td>
<td>2.17E+06</td>
</tr>
<tr>
<td>RMSE</td>
<td>5.66E+02</td>
<td>1.47E+03</td>
</tr>
<tr>
<td>PRED</td>
<td>62.3656</td>
<td>14.2857</td>
</tr>
<tr>
<td>Mean</td>
<td>-55.3205</td>
<td>-393.067</td>
</tr>
<tr>
<td>Std.Dev</td>
<td>5.67E+02</td>
<td>1.43E+03</td>
</tr>
<tr>
<td>skewness</td>
<td>-4.7549</td>
<td>-4.7468</td>
</tr>
<tr>
<td>kurtosis</td>
<td>41.2888</td>
<td>27.4722</td>
</tr>
</tbody>
</table>
REFERENCES

[7] Iris Fabiana de Barcelos Tronto, Jose Demisio Simoes da Silva, Nilson Sant'Anna,”An investigation of artificial neural networks based prediction systems in software project management”. The journal of system and software, June 2007, pp.356-367

