International Journal on Information Sciences & Computing, Vol. 7 No. 1 January 2013 60

SOFTWARE COST ESTIMATION MODELS USING ELMAN NEURAL NETWORKS
Praynlin E'., Latha P.

Government college of Engineering, Tirunelveli, India
Email: 1praynlin25@gmail.com, 2Iatha.muthuraj@yahoo.com

Abstract

Software cost estimation involves the estimation of cost required to develop a software. Cost overrun, schedule overrun
occur in the software development due to the wrong estimate made during the initial stage of software development. So
proper estimation is very essential for successful completion of software development. Lot of estimation techniques
available to estimate the effort in which neural network based estimation method play a prominent role.. ELMAN neural
network a recurrent type network can be used to estimate the cost. For a good predictor system the difference between
estimated cost and actual cost should be as low as possible. To control better the time, cost and resource assigned fo
software project, organization need proper estimate of their size even before the project actually start. The development
of a software system is an inherently complex process Estimating the cost needed to run a large software development

project is doubly so and notoriously difficult.

Keywords: ELMAN Network, Mean Magnitude of Relative Error (MMRE),

I. INTRODUCTION

Estimating software development cost remains a
complex problem, and the one which continues to draw
significant research attention and it is very difficult to
achieve accurate estimates[9,12]. Software project
managers usually estimate the software development
effort, cost and duration in the early stages of a
software life cycle in order to appropriately plan,
monitor and control the allocated resources.
Correctness in estimating the required software
development effort plays a critical factor in the success
of software project management Right amount of
resource should be allocated to a project[11]. If too
much of resource is allocated to the project to is called
as overestimation. If insufficient resource is allocated
to the project is called underestimation. Software
development activity involves lot of uncertainties the
requirement will change, the developing platform will
change, the developers capability to vary from one
person to another lot of uncertainties are involved in
the contributing factors which decides the effort
required to develop the software. Hence soft computing
frame work can be used that are good in handling the
uncertainty. For good software estimation tool the
estimated effort should be equal to the actual effort.
Accurate estimation allows manager to allocate the
resource to plan and coordinate all activities.

Accurate Software cost estimation is always a
difficult task. Estimation by experts, analogy-based

estimation and soft computing methods are some of
the effort estimation methods. In estimation by experts,
the entire project is subdivided into small activities and
with previous experience in effort estimation the
developer of software estimate the effort depending on
the type of task under consideration [8]. In analogy
based estimation is a form of CBR. Cases are defined
as abstractions of events that are limited in time and
space [13].In soft computing based approach several
technique like neural network fuzzy logic, genetic
engineering are used either individually or combinely
as hybrid approaches to predict the effort [6].Soft
computing based approach play a prominent role
because the ability of the soft computing frame work
to learn from previous projects especially neural
network is good in learning. Now a day’s estimation
method using neural network is the interesting area for
research compared to Theoretical estimation methods
[14]. While considering the neural network lot of neural
network architecture are available. Among which the
most widely used method was Back propagation
network. Elman network is a type of recurrent network
that is equally as important as Back propagation
algorithm. In our experiment both methods are used for
estimating software development effort and their
performance characteristics are analysed.

The paper is organized as follows. Section 2
gives the detail about the related works and section 3
talks about the research methodology and the brief

Praynlin et al. : Software Cost Estimation Models using Elman Neural Networks 61

description ELMAN neural network. Section 4 gives
detail about the dataset used. Section 5 gives detalil
about the experimentation, section 6 about evaluation
criteria. Results and conclusion are given in section 7
and section 8 repectively.

Il. RELATED WORKS

There are so many methods to estimate the cost
they are analogy based methods[5,15], Bayesian
methods[3,18]The use of Artificial Neural Networks to
predict software development effort has focused mostly
on the accuracy comparison of algorithmic models
rather than on the suitability of the approach for
building software effort prediction systems. Use of back
propagation learning algorithms on a multilayer
perceptron in order to predict development effort was
described by Witting and Finnie [20,19]. The study of
Karunanithi [10] reports the use of neural networks for
predicting software reliability; including experiments with
both feed forward and Jordon networks. The Albus
multiplayer perceptron in order to predict software effort
was proposed by Samson [16]. They use Boehm'’s
COCOMO dataset. Srinivazan and Fisher [17] also
exhibit the use of a neural network with a back
propagation learning algorithm. But how the dataset
was divided for training and validation purposes is not
clearly mentioned. Iris febine et al[7] compares
regression technique with artificial neural networks and
found artificial neural network to be better than
regression. Finally in the last years, a abundant interest
on the use of ANNs has grown. ANNs have been
fruitfully applied to several problem domains. They can
be used as predictive models because they are
modeling techniques having the capability of modeling
complex functions

ll. RESEARCH METHODOLOGY

Problem Statement: Understanding and calculation
of models based on historical data are difficult due to
inborn complex relationships between the related
attributes, are unable to handle categorical data as well
as lack of reasoning abilities. Besides, attributes and
relationships used to estimate software development
effort could change over time and differ for software
development environments. In order to overcome to
these problems, a neural network based model with
accurate estimation can be used.

The COCOMO Il model: The COCOMO model is a
software cost estimation model based on regression. It

was developed by Barry Bohem the father of software
cost estimation in 1981. Among of all traditional cost
prediction models. COCOMO model can be used to
calculate the amount of effort and the time schedule
for software projects. COCOMO 81 was a stable model
on that time. One of the problems with using COCOMO
81 today is that it does not match the development
environment of the late 1990’s.

Therefore, in 1997 COCOMO Il was published
and was supposed to solve most of those problems.
COCOMO Il has three models also, but they are
different from those of COCOMO 81. They are

e Application composition model-mostly
suitable for projects built with modern
GUI-builder tools. Based on new Object
Points

e Early Design Model-To get rough estimates
of a project's cost and duration before have
determined its entire architecture. It uses a
small set of new Cost Drivers and new
estimating equations. Based on Unadjusted
function Points or KSLOC

e Post-Architecture Model-The most detailed
on the three, used after the overall
architecture for the project has been
designed. One could use function points or
LOC as size estimates with this model. It
involves the actual development and
maintenance of a software product
COCOMO I describes 17 cost drivers that
are used in the Post-Architecture model [2].
The cost drivers for COCOMO Il are rated
on a scale from Very Low to Extra High in
the same way as in COCOMO 81. COCOMO
Il post architecture model is given as:

17
Effort = Ax [size]®x TI Effort Multiplier,

i=1
Where

5
B=1.01+0.01x Z Scale factor;

j=1

A= Multiplicative constant
Size = Size of the software project measured in terms
of KSLOC (thousands of source lines of code, function

62 International Journal on Information Sciences & Computing, Vol. 7 No. 1 January 2013

points or object points) The selection of Scale Factors
(SF) is based on the rationale that they are a significant
source of exponential variation on a project’s effort or
productivity variation. The standard numeric values of
the cost drivers are given in Table 1.The cost drives
and scale factors are given as input to the neural
network with effort as the networks output. Two type
of network used for analysis are discussed below.

A. Elman Network

Elman Network was first proposed by Jeffrey L.
Elman in 1990. Elman neural network is feed forward
network with an input layer, a hidden layer, an output
layer and a distinct layer called context layer A
recurrent network is one in which there is a

feedback from neuron’s output to its input. The
input

to the network is Xy, Xo , X3 — X,, and the output
of the network is taken as yj, yo, y3—y,. The output

of the hidden layer (h1, h2, h3---hn) are fed back again
to hidden layer neuron using context node
(¢, &, c3— ¢p). Unlike feed forward neural networks,

Recurrent Neural Networks can use their internal
memory to process arbitrary sequences of inputs. The
output of each hidden neuron is copied into a specific
neuron in the context layer. The value of the context
neuron is used as an extra input signal for all the
neurons in the hidden layer one time step later. In an
Elman network, the weights from the hidden layer to
the context layer are set to one and are fixed because
the values of the context neurons have to be copied
exactly as shown in Fig. 1.

Fig. 1. ELMAN Network

IV. DATASET DESCRIPTION

Here two types of datasets are used for analysis
one is COCOMO dataset which is the historic project
of nasa and Desharnais dataset, (i). COCOMO
DATASETS

Dataset used for analysis and validation of the
model can be got from historic projects of NASA. One
set of dataset consists of 63 projects and other consists
of 93 datasets. The datasets is of COCOMO Il format.
In our experiment 93 datasets are used for training and
63 data is used for testing.

The Dataset need for training as well as testing
is available in www.promisedata.org/?p=6 and in
www.promisedata.org/?p=35 . The dataset available is
of COCOMO 81 format which is to be converted to
COCOMO I by following the COCOMO Il Model
definition manual [1] and Rosetta stone [4] COCOMO
81 is converted to COCOMO Il. COCOMO 81 is the
earlier version developed by Barry Boehm in 1981 and
COCOMO 1l is the next model developed by Barry
Boehm in year 2000. Some of the attributes like TURN
are used only in COCOMO 81 and some new attributes
like RUSE, DOCU, PCON, SITE are introduced in
COCOMO II.

Table I. Effort Multipliers and their Range

Effort Multipliers Range
Required software Reliability | RELY [0.82 —1.26
Data base size DATA [0.90-1.28
Product Complexity CPLX [0.73-1.74

Developed for Reusability RUSE [0.95-1.24

Documentation Match to DOCU |0.81-1.23
Life-Cycle needs

Execution Time Constraints | TIME |1.00—1.63
Main storage Constraint STOR |1.00—1.46
Platform Volatility PVOL (0.87-1.30
Analyst capability ACAP [1.42-0.71
Programmer capability PCAP |1.34-0.76
Personal continuity PCON |1.29 —0.81
Applications Experience APEX |1.22-0.81

Praynlin et al. : Software Cost Estimation Models using Elman Neural Networks 63
Effort Multipliers Range RELY Descriptor Eatmlg " I?tffolrt
Platform Experience PLEX [1.19-0.85 evels uttipliers
Language and Tool LTEX [1.20-0.84 Ir\z/alggs:rl;%leeﬁg’ Norninal 1
Experience
Use of software tool TOOL [117-078 High financial loss, High 1.1
Multisite Development STE 122080 Risk to Human life Very High 1.26
Required Development SCED |1.43-1.00 () DESHARNAIS DATASET
Schedule
Deserharnais Datasets for experimentation
purpose are available in the link:

Table Il. Scale factors and their range

Scale Factor Range
Precedentedness PREC |0.00—6.20
Development Flexibility FLEX {0.00—5.07

Architecture/Risk Resolution RESL 0.00-7.07

Team Cohesion TEAM 10.00 —5.48

Process Maturity PMAT (0.00—-7.80

Every input as Effort multiplier has been tuned
by following the COCOMO Il model definition manual
[1]. The scale factor and Effort multiplier and their
range is given in Table | and Il. One of such inputs
RELY can be discussed below in Table [l

The Rating levels are fixed by the developer. If
the failure of the software causes slight inconvenience
and the corresponding rating level is very low, then the
effort multiplier is fixed to be 0.82. In case of some
software failure can easily be recoverable then the
corresponding rating level is Nominal and rating level
is fixed to be 1. If the failure of the software causes
risk to human life the rating level given by the
developer is very high then the effort multiplier is fixed
to be 1.26

Table lll. Fixing Input attributes

. Rating Effort
RELY Descriptor Levels | Multipliers
Slight Inconvenience Very Low 0.82
Low, easily recoverable Low 0.92
loss

http://promise.site.uottawa.ca/SERepository/datasets/d
esharnais.arff, The dataset includes the parameters like
Team expriance, Managers experience and totally eight
input parameters and one effort. It totally consists of
77 projects and 62 is used for training and 15 is used
for testing.

V. EXPERIMENTATION

Neural Network Uses two set of datasets One
set of dataset consists of 63 projects and other consists
of 93 datasets both are from the historic projects of
NASA. Here we use 93 projects for training the network
and 63 projects for testing. The simulation is done in
MATLAB 10b environment. Elman network the weight
and bias are randomly fixed so each time there is a
possibility of getting different result to avoid this
problem the whole network is made to run for 50
iteration and their errors are summed up.

The network designed uses only one hidden layer
and that hidden layer has eight neurons and output
layer has one neuron. The hidden layer uses sigmoidal
transfer function. And output layer uses linear transfer
function. The above consideration is used for ELMAN
network for uniformity. Input fed to the neural network
is normalised using Premnmx and the output is DE
normalised using postmnmx. Premnmx normalises the
value between (-1 to 1)

VI. EVALUATION CRITERIA

For evaluating the different software effort
estimation models, the most widely accepted evaluation
criteria are the mean magnitude of relative error
(MMRE), Probability of a project having relative error
less than 0.25, Root mean square of error, Mean and
standard deviation of error.

64 International Journal on Information Sciences & Computing, Vol. 7 No. 1 January 2013

The magnitude of relative error (MRE) is defined
as follows

[actual effort, — predicted effort] ...(1)
= actual effor,

The MRE value is calculated for each observation
| whose effort is predicted. The aggregation of MRE
over multiple observations (N) can be achieved through
the mean MMRE as follows

. (2)
MMRE =, 2 MRE;
]

MRE<0.25 (3

PRED (25) ==

Consider Y is the neural network output and T
is the desired target. Then Root mean square error
(RMSE) can be given by

RMSE =y - T)? (4)

Error can be calculated by the difference between
Y and T then mean and standard deviation is
calculated by calculating the mean and standard
deviation of the error

ERROR=(Y-T) (5)

The standard deviation can be calculated by
Standard deviation

. .(6)

1
o= \/N .21 (x—)2

1

The skewness of a random variable is the ratio
of its third central moment us to the cube of its

standard deviation c. Skewness is denoted as Y;.

g A7)

The kurtosis of a random variable is the ratio of
its fourth central moment 4 to the fourth power of its

standard deviation . Kurtosis is denoted as Y,. Thus

Uy (8)

VIl. RESULTS

Results of ELMAN for training and testing for
Desharnais dataset is given in Table IV and the dataset
for training and testing for COCOMO dataset is given
in Table.V . A model which gives lower MMRE is better
than the model which gives higher MMRE. A model
which gives high PRED(25) is better than the model
which gives lower PRED(25). Similarly the model which
gives lower RMSE is better than the model which gives
higher RMSE. The model which mean and standard
deviation is closer to zero is better than the models
which gives mean and standard deviation far away from
zero.

Table IV. Training and Testing results of
Desharnais dataset

Performance Training Testing
parameters
MMRE 0.3392 459E - 01
MSE 6.78E+06 2.36E+0
RMSE 2.60E+03 4.86E+03
PRED 43.5484 26.6667
Mean 4.83E+02 3.44E+03
Std.Dev 2.58E+ 03 3.55E+03
skewness 0.1115 0.5801
kurtosis 5.21 2.4652

Table V. Training and Testing Results of
COCOMO Dataset

Performace Training Testing
paramaters
MMRE 0.3785 2.745
MSE 321E+05 217E+06
RMSE 5.66E + 02 1.47E+03
PRED 62.3656 14.2857
Mean —55.3205 —393.067
Std.Dev 5.67E+02 1.43E+ 03
skewness —4.7549 —4.7468
kurtosis 41.2888 27.4722

Praynlin et al. : Software Cost Estimation Models using Elman Neural Networks 65

Time Taken

3.8532
3.12

Desharnais

Cocomo

Fig. 2. Time taken for training and testing of

ELMAN Network for Desharnais and COCOMO

dataset.

VIll. CONCLUSION
Most important thing in software effort prediction

is its closeness to actual effort. we have analyzed the
performance of both using historic dataset of NASA and
Desharnais dataset in ELMAN neural network. The
work can be extended by using different type of

learning methods and

learning algorithm. The

experimentation can be further validates using some
other datasets like kitchenham,Maxwell, myiazaki e.t.c

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

Barry Boehm, COCOMO II: Model Definition Manuel.
Version 2.1, Center for Software Engineering,
USC,2000.

Boehm B. W. “Software Engineering Economics”,
Englewood Cliffs, NJ, Prentice-Hall, 1981

Chikako van Koten,"Bayesian Statistical Models for
Predicting Software ~ Development Effort",The
Information Science Discussion Paper Series, ISSN
1172-6024,0ctober 2005.

Donald J. Reifer, Barry W. Boehm and Sunitha
chulani, “The Rosetta stone: Making COCOMO 81
Estimates work with COCOMO II”, CROSSTALK The
Journal of Defence Software Engineering, pp 11 - 15,
Feb.1999.

FIONA WALKERDEN,ROSS JEFFERY,"An Empirical
Study of Analogy-based Software Effort
Estimation,Empirical Software Engineering", 4, 135-
158 (1999), 1999 Kluwer Academic Publishers, Boston.

Iman Attarzadeh, Siew Hock Ow, “A Novel Algorithmic
Cost Estimation Model Based on Soft Computing
Technique,” Journal of computer science ,pp. 117-125,
2010.

Iris Fabiana de Barcelos Tronto , Jose Demisio Simo
es da Silva, Nilson Sant’Anna,”An investigation of

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

artificial neural networks based prediction systems in
software project management”. The journal of system
and software, June 2007, pp.356-367

Jorgenson.M, “Forecasting of software development
work effort: Evidence on expert judgement and formal
models,” International Journal of forecasting 23
pp.449-462, 2007.

Jo E. Hannay, "Better Software Effort Estimation— A
Matter of Skill or Environment?",SIMULA Research
Laboratory, Department of Software Engineering,
Pb.134.

Karunanitthi.N, D.Whitely, and Y.K.Malaiya, “Using
Neural Networks in Reliability Prediction,” |EEE
Software, 1992. vol.9, no.4, pp.53-59

Katherine Baxter,"Understanding Software Project
Estimates”, Champlain College, CROSSTALK The
Journal of Defense Software Engineering,March/April
2009

Les Hatton,"How Accurately Do Engineers Predict
Software Maintenance Tasks?", Kingston University
London, |IEEE computer society, 2007.

Martin Shepperd And Chris Schofield, “Estimating
Software Project Effort Using Analogies,” IEEE
Transactions On Software Engineering, Vol. 23, No.
12, PP.736-743 November 1997.

Magne Jorgenson and Martin Shepperd, “A Systematic
Review of Software Development Cost Estimation
Studies”, IEEE Transactions on software engineering,
Vol.33, No.1,pp.33-53, January 2007

Mohammad Azzeh, Daniel Neagu, Peter I
Cowling,"Analogy-based software effort estimation
using Fuzzy numbers",The Joumal of Systems and
Software 84 (2011) 270-284

Samson.B, D. Ellison, and P. Dugard, “Software Cost
Estimation Using Albus Perceptron (CMAC),”
Information and Software Technology,
1997 ,vol.39,pp.55-60.

Srinivazan.K, and D. Fisher, “Machine Learning
Approaches to Estimating Software Development
Effort,”. IEEE Transactions on Software Engineering,
February 1995, vol.21,n0.2, pp. 126-137

Sunitha Chulani, Barry Boehm, Bert steece,"Bayesian
Analysis for Empirical software Engineering cost

models’, univeristy of southem california,
USC-CSC-1999
G.Witting, and G.Finnie, “Estimating software

development effort with connectionist models,” Inf.
Software Technology, 1997,vol.39, pp.369-476
G.Witting, and G. Finnie, “Using Artificial Neural
Networks and Function Points to Estimate 4GL
Software Development Effort”, J.Information
Systems, 1994, vol.1, no.2, pp.87-94.

