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Abstract

In this paper we define a new sub class of Petri nets called algebraic conservative Petri nets (ACPN) for a given symmetric
group S,. We prove that the resulting Petri net (ACPN) is a marked graph. In particular, we show that the algebraic

conservative Petri nets associated with S3 and S5 has decompositions m ={m,,m,m,m, m,} and m'={m, m,m, T, ..

L T

respectively, for the sets of places such that each block .is both siphon and trap and hence the underlying directed graphs of
these algebraic conservative Petri nets are Eulerian. Also we show that each of the ACPN associated with these groups
has a subset of places which are both siphon and trap such that the input transitions equal the output transitions and both of
them equal to the set of all transitions of these algebraic conservative Petri nets and hence that the underlying directed
graphs of these algebraic conservative Petrinets associated with S,and S, are Hamiltonian.
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I. INTRODUCTION

Petri net is a mathematical modeling tool for
concurrent systems and has been widely investigated by
many researchers [1,2]. A Petri net consists of two kinds of
nodes called places and transitions. Directed arcs are
used to connect places to transitions and transitions to
places. Small dots, called tokens in the places representa
marking of a Petri net. In a graphical representation of a
Petri net the places are represented by circles and
transitions are represented by bars or small boxes. Various
areas of applications of Petri nets include modeling and
analysis of the distributed systems, parallel processes,
information systems,  databases, communication
protocols,

The study of structural properties and behavioral
properties for marked graphs has been made utilizing
siphons and traps [4,5,6]. Anonempty subset of places Jis
called a siphon if every transition having an output place in
Jhas aninput place in J. Anonempty subset of places Q is
called a trap if every transition having an input place in Q
has an output placein Q.

In this paper we define a new sub class of Petri nets
called algebraic conservative Petri nets (ACPN) for a
given symmetric group S,. We prove that the resulting
Petrinet (ACPN) is a marked graph . In particular, for the
groups S, and S, , we show that each of the ACPN
associated with computer hardware architectures,
manufacturing systems, formal languages and automata,
learning theory and graph theory [5,7].

These groups hasa subset of places which are both
siphon and trap such that the input transitions equal the
output transitions and both of them equal to the set of all
transitions of these  algebraic conservative Petri nets

and hence that the underlying directed graphs of these
algebraic conservative Petri nets are Hamiltonian. Also
we show that the algebraic conservative Petri nets
associated with S, and S, has decompositions
={m,m,m,m, T, jand W ={m, WM, T, ..., T
respectively, forthe sets of places such thateach block
is both siphon and trap and hence the underlying directed
graphs of these algebraic conservative Petri nets
associated with S,and S, are Eulerian.

II. PRELIMINARIES

In this section we present some basic definitions
relevant to this paper.

Definition 2.1: APetrinetistriple N=(P. T, F) where Pis a
finite set of places, Tis finite set of transitions such that

() PUT # P(T=¢
(i) OFc (PxT)u (TxP) issetofdirectedarcs.

Forall p P'p={teT| (tp)eF}and p’={t € T|(p,t
) € F} be the input and output sets of p respectively.
Similarlyforall t €T, "t={pe P |(p,t) e F}andt* ={p
P | (tp) eF}be theinputand output sets of ¢
respectively.

Definition 2.2: A Petri net is said to be a marked graphif |
o= I'p |=1forall peP

Definition 2.3: A Petri net is said to be conservative if |t
= |t" [forall t T,

Definition 2.4: A non-empty subset of places Jina Petri
net is called a siphon if *J < J* . That is every transition
having an output place in Jhas aninput place in J.
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Definition 2.5: A nonempty subset of places Q in a Petri
net graphiscalledatrapif Q° < Q. Thatiseverytransition
havinganinputplacein Q hasanoutputplacein Q.

Definition 2.6: Anon empty subset Z of places in a Petri
net graph is said to be both siphon and trap if *Z=Z7" .
Thatis, every transition having an input place in Z has an
outputplacein Z andvice versa.

Example 2.7: Consider a Petrinet shownin Fig. 1
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i %
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Fig .1 APetri net

Inthis Petrinet let J={p, p, p,}. Then'J={t, t,},andJ* =
{t,t,t,}. Here *J < J*. Therefore Jisasiphon.Let Q=
{ps P, Then "Q={t, t, t},Q"={t, t}. HereQ < *
Q. Therefore Qisatrap.

Let Z={p, p,ps Now, "Z={t, t,t}, Z°={t, t,t}. Here
Z'= "Z .Therefore Zis both siphon and trap.

Definition 2.8: The symmetric group S, is the group of all
permutations on n  symbols. This S, is called a
permutation group of order n/

Example 2.9: Consider the group S,={a, B, v, o, ¢, ¥}
where a=(1)(2) (3), B=(13)(2),y=(12)(3), 6=(132),¢
=(1)(23), ¥=(123) withgeneratingset S={a, ¥}

ll. ALGEBRAIC CONSERVATIVE PETRI NETS

In this section we define the new sub class of Petri
nets and prove the main results.

Theorem 3.1: There exista algebraic conservative Petri
net for every symmetric group with a generating set.

Proof: Let S, be a symmetric group with generating set S
={(1,2),(1,2,3...,n)}.Let y=(1,2)and 6=(1,23,...,n).
Take the elements  {,t, t,t, ....., t, of the group S, as
transitionsand set T={t,t, t,t, ....,t, }.Now ScT. For
every t,e Tand t, € Ssuchthat ¢t =t introduce
aplace p suchthat ‘p= tand p =t. Since the
generating set S has 2 elements and the group has n!
elements, this process will yield a Petrinet N with place
set Pandthetransitionset T suchthat |T| =n!/ and |P

| = 2.n!.Since the setS has exactly two elements, we
have that each transition has exactly two input places and
exactly two output places. Now keep tokensinaplace p
if pistheinputof ¢ t foreveryt t e S. Thuswe have
constructed a conservative Petri net with initial marking.
The resulting Petri net on S, with generating set as S is
called algebraic conservative Petri net denoted as
ACPN(S:S,).

Proposition 3.2: Every algebraic conservative Petri net
( ACPN ) for the symmetric group of order n! , with a
generating setis amarked graph.

Proof: From the construction of algebraic conservative
Petrinet, (Theorem 3.1) the places are introduced in such
way that each place has exactly one input transition and
exactly one output transition. Hence by definition, it is a
marked graph.

Lemma 3.3 Thealgebraic conservative Petrinet on S,
is boundedbut not 1-safe.

Proof: From the construction of algebraic conservative
Petrinet, a token is deposited inaplace pif pistheinput
of t t foreveryt t e S. So, initially n! places will
receive tokens. Since the this Petri net is conservative,
the tokens deposited in this net is neither created nor
destroyed. Hence any place can have a maximum of n!
tokens and thus itis bounded. Again, thereisa possibility
of aplace which canhave n! tokensinit, we conclude that
itisnot 1-safe.

The construction of underlying directed graph Ns, for
the given marked graph Nis givenin [4,5].

Theorem 3.4:1fthe ACPN(S:S,) fora given symmetric
group S, has a subset of places Zsuch that Z=2"=T
where Tis the set of all transitions of ACPN (S:S,) , then
the underlying directed graph Ns, has a Hamiltonian
circuit.

Proof: In [4] it is proved that if there exist a subset Z of
places in a marked graph suchthat '’Z=2Z"=T, where Tis
the set of all transitions of the marked graph then the
edges corresponding to the places in Z constitute a
directed Hamiltonian circuit in  the underlying directed
graph. Hence by proposition 3.2, the theorem follows.

Theorem 3.5:Ifthe place set Pof ACPN (S:S,) fora
given symmetric group S, has adecomposition 7= {r,,,,
7, ..., 7, } in which each block ; both siphon and trap then
the underlying directed graph  Ns, of ACPN (S:S,) is
Eulerian.

Proof: In[5]itis proved thatifthere exista decomposition
n = {n,m, w,, .. .mn, } for the set of places of a marked
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graph such that each block ; in the decomposition t =
{r,m, m,, .. .m, }is both siphon and trap then the

underlying directed graph of that marked graph is Eulerian.
Hence by proposition 3.2, the theorem follows.

Example 3.6: Consider the symmetric group given in
example 2.9. The algebraic conservative Petrinet for the
group S,, ACPN (S:S,) isshowninFig.2. Clearly thisis
a marked graph.

Let == {n,m, m, n,n,} be the partition of the set of
placesof S, where ,= {p, p.},

0,= {05 Ps P2}, 5= {Ps Pods T0,= {D10 P11} T={ Py P P12}
Suchthat *rt,= {o, A},

‘w, ={o, A}. Thatis ,
siphon and trap.

Similarly, ‘m, ={B,9,A}, m,” ={B,¢,A }.Thatis, 'x,
=1, . Therefore ‘m, is both siphon and trap. ", ={B, o},
n, ={B,0}. Thatis, ‘m, = m,". Therefore ,isboth
siphonandtrap. 'n, = {@,9} w,” = {@,y}. That is,
Therefore, is both siphonand trap.

;= {0,908}, w = {oy,7»} Thatis, 'm,= =
Therefore T, is both siphon and trap. Hence the
underlying directed graph of the marked graph for S, is
Eulerian.

Again in ACPN(S:S,) there existasubset Z={p,, p,, p,,
Ps P1» P Suchthat 'Z=Z"= T Therefore in the underlying
directed graph, the edges {e, e, e, e, e, e,
corresponding to the places in Z constitutes a directed
Hamiltonian circuit.

‘t,= n’, Therefore ,isboth

.754 = 754._

[ I
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L

Fig .2 The algebraic conservative Petri net for the group given in
example 2.9
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Fig .3 The underlying directed graph for the algebraic conservative
Petri net for the Fig .2

Example 3.7: Consider the symmetric group S,
consisting of 120 elements as follows.

12345 21345 31245 | 41235 51234
12354 21354 | 31254 | 41253 51243
12534 21534 | 31425 | 41523 51342
12543 21543 31452 | 41532 51324
12435 21453 31524 | 41325 51423
12453 21435 31542 | 41352 51432
13245 23145 32145 | 42135 52134
13254 23154 32154 | 42153 52143
13425 23415 32514 | 42513 52314
13452 23451 32541 42531 52341
13524 23514 | 32415 | 42315 52413
13542 23541 32451 42351 52431
14235 24315 34251 43251 53421
14253 24351 34215 | 43215 53412
14325 24531 34521 43521 53241
14352 24513 34512 | 43512 53214
14523 24135 34125 | 43125 53142
14532 24513 34152 | 43152 53124
15432 25413 35142 | 45132 54321
15423 25431 35124 | 45123 54312
15243 25341 35421 45321 54213
15234 25314 | 35412 | 45312 54231
15342 25143 35214 | 45231 54123
15324 25134 | 35241 45213 54132
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Let S, be a symmetric group with generating set S={(12),(12345)}.Lety=(12)and W=(12345). Since S,has
120 elements, take the elements of S, as the transition set of conservative Petrinet. Thatis, T={t,t,t,..., t,,,}. Based on
the theorem, we have 240 places namely P ={p,, p,, Py P ------ Pax}- The input and outputs of transitions are given in the
following table. This leads to the following conservative Petrinet ACPN (S:S,).

‘t1={p2.Pi2s}
ti" ={p1, p121}

"={pa.Pi13o}
t2'={ps, P26}

“t3={pe:P135},
t3"={ps, p131}

“ta={ps.Prao},
ta"={P7, p13s}

“ts={P10.P145},
ts"={po, P1a1}

“te=1{P12.P150} -
te"={p11, P1as}

"t7={P14.P155»
t7"={p13, p1s1}

“ts={P16-P160} >
ts"={p1s, pP1se}

"to={P18.P165} >
to'={p17. Pi61}

“tio=1P20.P170} »
tio"={P19, Piss}

tii={p22.pi175},
ti"={p21. P171}

“tiz={p24.Piso}
ti2"={p23, P176}

“tiz={p2e.Piss}
t13"={p2s. pis1}

"tia={p2s.P190},
tia"={p27, Pise}

“tis={p30.pP19s},
tis"={p29, p191}

“ti6={P32.P200},
tis ={P31, P136}

"t17={P34.P205},
t17 =1{p33, P2o1}

‘tis={p36.P210},
tis"=1{P3s, P2os}

‘tio={p3s.p215}
tio ={pP37. P211}

“t20={P40.pP220}»
t20"={pP39, P216}

“t21={pa2,p225},
tz1 " ={pa1, p221}

“t22=1{paa,P230},
to'={pa3, p226}

“t23={P46:P235},
t23'={pas, p231}

“t2a={pas.P240},
tog = {pa7, P236}

“t2s={p1.P226}-
tas ={p2, P227}

“t26={pP3.P221}>»
tas ={pa, P222}

“t27={ps.P216}
t27"={Ps, P217}

t2s={p7.pP211}
tos'={ps, P212}

“t20={p11.p231}
t20'={pi2, P22}

“t30={P9.P236}
t30"={P10, P237}

t1={p13.p131}
t31"={pP14, P132}

“t3o={p1s.P136}
t32"={P16. P137}

“t33={p17.P126 }
t33"={pis. P127}

‘taa={p19.p121}
t3a"={p20. P122}

“tas={p21.P146}
t35"={p22, P1a7}

“t3e=1{pP23.P141}
t3g ={P24, P14z}

"t37={pP29.P156 |
t37 ={p30, P157}

“t3g=1{p31.Pis1 }
t3g'={paz, P1s2}

“t30=1{P3s.P161}
t30"=1{P36> Pi62}

“tso={P33.Pi66}
t30"={pP34; P167}

‘tar={p2s.P171}
ta1"={p2e6, P172}

“taz={p27.P176}
ta2"={pa2s, p177}

“taz={p39.P196 }
ta3"={pao, P1o7}

“taa={p37.p191}
taa = {pss, P1oz}

“tas={pas.Pis1}
tas"={pas, P182}

"tas=1{Pa7.Pise
tss = {pas. P137}

"t47={Pa1.P206 }
ta7"={pa2, P207}

"tas={pas.P2o1}
tas = {pPa4, P202}

“tao={Ps0.P202}
tao ={pa9, P203}

“tso={ps2.P207}
tso"={ps1, pP2os}

ts1={Psa.P187}
tsi"={ps3, Piss}

ts2={Pse.P1s2}
ts2"={pss. P1s3}

“ts3={pss,P197}
ts3"={ps7, P1os}

“tsa={Ps0o.P192}
ts4"={ps9, P193}

“tss={pao.P217}
tss"={pso, p218}

‘tse={Ps1.P212}
tse ={ps2, P213}

“ts7={ps7.p232}
ts7"={pss, pP233}

“tsg={pPs9.P237}
tsg"={peo, P23s}

"tso={ps3.pa22}
tso ={ps4, P223}

"teo={pss.P227}
tso ={Ps6. P22s8}

‘te1={P62.P132}
te1 ' ={Ps1, P133}

"te2=1{P6a-P137}
te2 ={Ps3, P13s}

“te3={Pe6.P127}
te3 ={Pes. P128}

“tea=1{Pss-P122}
tea = {Pe6s. P123}

“tes={Pe3.P147}
tes = {Po4, P14s}

“te6=1Pe1.P142}
tes =1{Pe2. P143}

"te7=1Psg-P162}
te7"={Ps7. P163}

“tes={P70.P167}
tes ={Pe9, P1os}

"teo={P72:P157}
teo ={pP71, P158}

“tz0={p71.P152}
t70"=1{p72, pP153}

‘t11={Pe9.P177}
t71"={p70, P178}

“t72={ps7.P172}
t72"={pes. P173}

“t73={p74.P168 }
t73"={p73, P1e9}

"t7a={p76-P163}
t7a’={p7s, Prea}

“t7s={p7s.P153}
t75"={p77. P154}

“t76={Pso.P1ss }
t76"={pP79, P159}

“t77={Ps2.P178}
t77°={psi> P179}

“t7s=1{ps4.P173}
t78"={pPs3, P174}

“t7o={p73.Pros}
t70"=1{pP74, P19o}

“tgo={p7s5.P193}
tso ={P76, P194}

“ts1={p77.P183 }
ts1 "={p7s, Pisa}

“tg2={p79.P1ss}
ts2"={pso. Piso}

“tg3={ps1,P20s |
ts3"={ps2, P209}

“tga={Ps3.P203}
tgs = {Psa, P04}

“tgs={Pse.P218}
tss ={pss, P219}

“tse={Pss.P213}
tss ={Ps7. P214}

"ts7={P90.P223}
tg7 = {Psgo, P224}

“tgs={pPs9.P228}
tgs "= {P9o. P220}

“tgo={Ps7.P233}
tgo = {pss, P23a}

“too={pPss.P23s}
too " ={Pse> P239}

“to1=1{p92.pi2s}
to; "={poi, P129}

“tor={P94.P123}
tox " ={p93, P124}

“to3={poc.P13s}
to3"={pos, P139}

“tos={pos.p133}
tos ={P9s. P134}

“tos={po1.Pi4s}
tos"={po2, P149}

"toe={P93.P143 }

"to7={p9s.P124}

“tos=1{pP1oo,P129}

“too={P102.P149}

“tioo=1{P104,P1aa}

tos ={Poa, Praa} | to7'={pPo7, P25} tog ' ={poo, P13o} | too ™ ={pio1; P1so} | tioo"={pi03,

P1as}
‘tlor=1{P106-P134} | ti2={P10s.-P139} | ‘tio3={Po7.P134} | "tioa={poo.p1so} | "tios={P103.Pies}
tio1 ={pios, tio2"=1{pio7, tio3 " ={pos. P1ss} | tioa"={pioo, tios ={pP1oa,
Pi3s) Piao} Piso} Pies})

“tios={P101.P1eo}
tios =1{P102,

"tio7=1{P105.P174}
tio7"=1{P106-

“tios={pP107.p179}
tios =1{Pios.

“tioo={P110.P209}
ti0o"={pP109,

“ti1o0={P109.P204}
tito ™ ={p110,

pPi7o} P17s} Piso} pzio} P205}
‘tn={pnzpee} | t={pnapios} | tiz={pinpise; | ‘ta={pus.piss} | ‘tiis={piie.p21a}
ti ={pi tiz2"={pus, iz ={piz, tia" ={pia. tiis"={p11s,
P200} pios} Pioo} Piss} P2is}
‘tiie={P11s.P219} | ‘tiir={P1is.Pazo} | ‘t11g={P120.p23a} | ‘ti1o=1P117.P220} | ‘ti20={P119.P224}
tiie ™ ={piie. tn7 ={pn tis ={pi9, pz2as | tie’={pns, ti20"={p120,
P220} P240} P230} P22s}
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Let = {m .M .M3...., .ms4 ; be the partition of the set of places of Ss. where

M1 = {P121. P122. P123. P124, P125}. M2= {P126, P127, P128. P129. P130}. T3 = {P131. P132. P133, P134. P135}.
T4 = {P136. P137. P138. P139. P140}. T5= {P141. P142. P143. P144. P145}. T6= {P146. P147. P14s. P149. P150} .
7= {P151. P152. P153. P154. P155§. T8 = {P156. P157. P158. P159. P160}. M9 = {P161. P162. P163. P164. P165}-
0= {P166. P167. P168. P169, P170 } . T11 = {P171. P172, P173. P174.P175} . T12 = {P176. P177, P178. P179. P180} .
713 = {P181. P182. P183. P184. P185}, T14= {P186. P187. P188s. P189. P190}. T15= {P191. P192. P193. P194. P195}.
T16= {P196. P197. P198. P199. P200} , 17 = {P201. P202. P203. P204. P205}. T18 = {P206. P207. P208. P209 .P210} .
1o ={P211. P212. P213. P214. P215), 20 = {P216. P217, P218, P219, P220}. T21 = { P221. P222, P223, P224, P25},
T22= {P226. P227. P228. P229. P230}. T23 = {P231. P232. P233, P234. P235). M2a= {P236. P237. P23s. P239. P40}
5= {P1. P2}. T26= {P3. P4}, T27 = {Ps.Ps}. T28= {P7.Ps}. T20= {Po.P1o}. T30 = {P11. P12},
m31= {P13. P1a}. T2= {P15. P16}. M33= {P17. P18}. T34= {P19. P20}. T35 = {P21. P22}. M6 = {P23, P24},
m37 = {P2s. P26} . M3s= {P27.p2s}. o= {pP20.p30}. T40= {P31.p32}. Ta1= {P3s.p34}. 7= {P3s. P3s}.

743 = {P37, P3s}.
M40 = {P49. P50}-
Tss= {Ps1. P62} .
T61 = {P73. P74}-
T67= {Pss. Ps6} -

4= {P39. P40}, T 5= {Pa1. pa2}.
s0= {Ps1. P52}. Ts1= {Ps3. Ps4}.
56 = {P63. Pes}. Ts7= {P6s. P66} -
62 = {pP7s. P76} . W63 = {P77. P78}.
T6s = {Ps7. Pss}. M6o= {Pso. Poo}. M70= {Po1. Po2}. ®71= {Po3. Pos}. 772= {P95.Po6} .

a6 = {P43. P44}, T47= {P45. Pas}. Tus= {Pa7. Pas}.
M52 = {Pss. Ps6). ®s3= {Ps7. Pss}. Tsa= {Pso. Pso}.
Ttss = {P67. Pes}. Tso= {Peo. P70}. Meo= {P71. P72}.
Tsa= {P79. Pso}. T65= {Ps1. Ps2}. Te6= {Ps3. Ps4).

773 = {Po7, Pos}. M74= {Poo. P100}. T75= {P101. P102}. T76= {P103. P104}. T77= {P105. P106}.
m78= {P107. P108}. ®79= {P109. P110}. M0 = {P111.P112}. ®81= {P113. P114} .82 = {P115.P116}.

ng3 = {P117.p11s}, T8a= {P119.p120}

The above ACPN (S:S,) is clearly a marked graph.
This ACPN (S:S,) has a subset of places which are both
siphon and trap such that the input transitions equal the
output transitions and both of them equal to the set of all
transitions of the marked graph and hence that the
underlying directed graph of this marked graph is
Hamiltonian. Since there exists a partition for a place set P
such that each block in the partition of the set of places of
the marked graph is both siphon and trap, the underlying
directed graph for ACPN(S:S;) is Eulerian.

Fig .4 The underlying directed graph for the algebraic conservative
Petri net given in example 3.6

IV. CONCLUSION

In this paper we introduced a new sub class of Petri
nets called algebraic conservative Petri nets (ACPN) fora
given symmetric group S,. We proved that the resulting
Petrinet (ACPN) isa marked graph . In particular, for the
groups S, and S, , we show that each of the ACPN
associated with these groups has a subset of places
which are both siphon and trap such that the input
transitions equal the output transitions and both of them
equal to the set of all transitions of these  algebraic
conservative Petri nets  and hence that the underlying
directed graphs of these algebraic conservative Petri
nets are Hamiltonian. Alsowe shown thatthe algebraic
conservative Petri nets  associated with S, and S, has
decompositions

n={n,, m, m, M, W }and  w={m, ®, T, W, .., T
respectively, forthe sets of places such thateachblock =
. s both siphon and trap and hence the underlying directed
graphs of these algebraic conservative Petri nets
associatedwith S,and S, are Eulerian.

REFERENCES

1] Murata, T., Petri nets, Properties, Analysis and
Applications, Proceedings of IEEE, 77, 541-580.
(1989).

[2] Peterson J.L., Petrinet theory and the modeling
of systems, Prentice Hall, Englewood Cliffs, New
Jersy (1981).



Rajeswari et al : Algebraic Conservative Petri Nets Based on Symmetric Groups 85

[3]

(4]

(5]

[6]

Rajeswari, R and K. Thirusangu, Marked Graphs
and Symmetric Groups, Proceedings of
International Conference on Trends in
Information Sciences and Computing,
Sathyabama University, Chennai, 428-432,
(2007)

Thirusangu, K and Rangarajan, K, Marked
Graphs and Hamiltonian Graphs, Micro
Electronics and Reliability, 37, 1243-1250
(1997).

Thirusangu,K and Rangarajan, K, Marked
Graphs and Eulerian Graphs, Micro Electronics
and Reliability, 37, No:2, 225-235(1997)

Thirusangu, K, Ranganayakulu,D and
Rangarajan, K, Marked Graph and P-groups,
Acta Ciencia Indica, Vol. XXVIIM, No.3, 321
(2001).

[7]

Witte D. Cayley digraphs of Prime Power Order
are Hamiltonian, Journal of Combinatorial
Theory, Series, B40, 107-112(1986).

Ms. Rajeswari .R - Faculty,
Department of Mathematics,
Sathyabama University. She has 6

_ ;“> years of academic experience. She

»| has presented 4 papers in national and
international conferences. Her area of
research is Algebraic Petri Nets.




