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Abstract

This paper concerns using learning machines for intrusion detection. Two classes of learning machines are studied: Artificial
Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs for intrusion
detectionin three critical respects: SVMs train, and run, an order of magnitude faster; SVMs scale much better; and SVMs give
higher classification accuracy. We also address the related issue of ranking the importance of input features, which is itself a
problem of great interest in modeling. Since elimination of the insignificant and/or useless inputs leads to a simplification of the
problem and possibly faster and more accurate detection, feature selection is very important in intrusion detection. Two
methods for feature ranking are presented: the first one is independent of the modeling tool, while the second method is
specific to SVMs. The two methods are applied to identify the important features in the 1999 DARPA intrusion data. Itis shown
that the two methods produce results that are largely consistent. We present various experimental results that indicate that
SVM-based intrusion detection using a reduced number of features can deliver enhanced or comparable performance. An
SVM-based IDS for class-specific detection is thereby proposed.
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I. INTRODUCTION

This paper concerns intrusion detection and the
related issue of identifying important input features for
intrusion detection. Intrusion detection is a problem of
great significance to critical infrastructure protection
owing to the fact that computer networks are at the core of
the nations operational control. We use two types of
learning machines to build Intrusion Detection Systems
(IDSs): Artificial Neural Networks or ANNs (1) and Support
Vector Machines or SVMs (2). Since the ability to identify
the important inputs and redundant inputs of a classifier
leads directly to reduced size, faster training and possibly
more accurate results, itis critical to be able to identify the
important features of network traffic data for intrusion
detection in order for the IDS to achieve maximal
performance. Therefore, we also study feature ranking
and selection, which is itself a problem of great interest in
building models based on experimental data.

Since most of the intrusions can be uncovered by
examining patterns of user activities, many IDSs have
been built by utilizing the recognized attack and misuse
patterns to develop learning machines (3,4,5,6,7,8,9,10,11).
In our recent work, SVMs are found to be superior to ANNs
in many important respects of intrusion detection
(12,13,14); we will concentrate on SVMs and briefly
summarize the results of ANNSs.

The data we used in our experiments originated
from MIT's Lincoln Lab. It was developed for intrusion
detection system evaluations by DARPA and is
considered a benchmark for intrusion detection

evaluations (15).

We performed experiments to rank the importance
of input features for each of the five classes (normal,
probe, denial of service, user to super-user, and remote to
local) of patterns in the DARPA data. Itis shown that using
only the important features for classification gives good
accuracies and, in certain cases, reduces the training time
and testing time of the SVM classifier.

In the rest of the paper, a brief introduction to the
datawe used is given in section 2. In section 3 we describe
the method of deleting one input feature at a time and the
performance metrics considered for deciding the
importance of a particular feature. In section 4 we present
the experimental results of using SVMs for feature
ranking. In section 5 we present the experimental results
of using ANNs for feature ranking. In section 6 we
summarize our results and give a brief description of our
proposed IDS architecture.

Il. THE DATA

In the 1998 DARPA intrusion detection evaluation
program, an environment was set up to acquire raw
TCP/IP dump data for a network by simulating a typical
U.S. Air Force LAN. The LAN was operated like a real
environment, but being blasted with multiple attacks. For
each TCP/IP connection, 41 various quantitative and
qualitative features were extracted (16). Of this database
a subset of 494021 data were used, of which 20%
represent normal patterns.
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Attack types fall into four main categories:
1. DOS:denial of service
2. R2L:unauthorized access from a remote machine

3. U2Su: unauthorized access to local super user (root)
privileges

4. Probing: surveillance and other probing
A. Denial of Service Attacks

A denial of service attack is a class of attacks in
which an attacker makes some computing or memory
resource too busy or too full to handle legitimate requests,
or denies legitimate users access to a machine. Examples
are Apache2, Back, Land, Mailbomb, SYN Flood, Ping of
death, Process table, Smurf, Syslogd, Teardrop,
Udpstorm.

B. Userto RootAttacks

User to root exploits are a class of attacks in which
an attacker starts out with access to a normal user account
on the system and is able to exploit vulnerability to gain
root access to the system. Examples are Eject, Ffbconfig,
Fdformat, Loadmodule, Perl, Ps, Xterm.

C. Remote to UserAttacks

Aremote to user attack is a class of attacks in which
an attacker sends packets to a machine over a networkbut
who does not have an account on that machine; exploits
some vulnerability to gain local access as a user of that
machine. Examples are Dictionary, Ftp_write, Guest,
Imap, Named, Phf, Sendmail, Xlock, Xsnoop.

D. Probing

Probing is a class of attacks in which an attacker
scans a network of computers to gather information or find
known vulnerabilities. An attacker with a map of machines
and services that are available on a network can use this
information to look for exploits. Examples are Ipsweep,
Mscan, Nmap, Saint, Satan.

lll. RANKING THE SIGNIFICANCE OF INPUTS

Feature selection and ranking (17,18) is an
important issue in intrusion detection. Of the large number
of features that can be monitored for intrusion detection
purpose, which are truly useful, which are less significant,
and which may be useless? The question is relevant
because the elimination of useless features (or audit trail
reduction) enhances the accuracy of detection while
speeding up the computation, thus improving the overall
performance of an IDS. In cases where there are no
useless features, by concentrating on the most important
ones we may well improve the time performance of an IDS

without affecting the accuracy of detection in statistically
significant ways.

The feature ranking and selection problem for
intrusion detection is similar in nature to various
engineering problems that are characterized by:

Having a large number of input variables x = (x1,
x2,_,_,_ xn) of varying degrees of importance; i.e., some
elements of x are essential, some are less important, some
of them may not be mutually independent, and some may
be useless or noise

Lacking an analytical model or mathematical
formula that precisely describes the input-output
relationship,

Y=F (x).

Having available a finite set of experimental data,
based on which a model (e.g. neural networks) can be built
for simulation and prediction purposes Due to the lack of
an analytical model, one can only seek to determine the
relative importance of the input variables through empirical
methods. A complete analysis would require examination
of all possibilities, e.g., taking two variables at a time to
analyze their dependence or correlation, then taking three
at a time, etc. This, however, is both infeasible (requiring
2n experiments!) and notinfallible (since the available data
may be of poor quality in sampling the whole input space).
In the following, therefore, we apply the technique of
deleting one feature ata time (14) to rank the input features
and identify the mostimportant ones for intrusion detection
using SVMs (19).

A. Performance-Based Method for Ranking Importance

We first describe a general (i.e., independent of the
modeling tools being used), performance-based input
ranking methodology: One input feature is deleted from
the data at a time, the resultant data set s then used for the
training and testing of the classifier. Then the classifier's
performance is compared to that of the original classifier
(based on all features) in terms of relevant performance
criteria.  Finally, the importance of the feature is ranked
according to a set of rules based on the performance
comparison.

The procedure is summarized as follows:

1. Compose the training set and the testing set;
for each feature do the following

2. Delete the feature from the (training and testing)
data;

3. Usetheresultantdata setto train the classifier;

4. Analyze the performance of the classifier using the
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test set, in terms of the selected performance
criteria;

5. Rank the importance of the feature according to the
rules;

B. Performance Metrics

To rank the importance of the 41 features (of the
DARPA data) in an SVM-based IDS, we consider three
main performance criteria: overall accuracy of (5-class)
classification; training time; and testing time. Each feature
will be ranked as ‘“important”, “secondary”, or
“insignificant”, according to the following rules that are
applied to the result of performance comparison of the
original 41-feature SVM and the 40-feature SVM:

Rule set:

1. Ifaccuracy decreases and training time increases and
testing time decreases, then the feature isimportant

2. Ifaccuracy decreases and training time increases and
testing time increases, then the feature is important

3. If accuracy decreases and training time decreases
and testing time increases, then the feature is
important

4. If accuracy unchanges and training time increases
and testing time increases, then the feature is
important

5. If accuracy unchanges and training time decreases
and testing time increases, then the feature is
secondary

6. If accuracy unchanges and training time increases
and testing time decreases, then the feature is
secondary

7. If accuracy unchanges and training time decreases
and testing time decreases, then the feature is
unimportant

8. Ifaccuracy increases and training time increases and
testing time decreases, then the feature is secondary

9. Ifaccuracy increases and training time decreases and
testing time increases, then the feature is secondary

10. Ifaccuracy increases and training time decreases and
testing time decreases, then the feature is
unimportant

According to the above rules, the 41 features are
ranked into the 3 types of {Important}, <Secondary>, or
(Unimportant), for each of the 5 classes of patterns, as
follows:

class 1 Normal: {1,3,5,6,8-10,14,15,17,20-23,25, 29,

33,35,36,38,39,41}, <2,4,7,11,12,16,18,19,24,30, 31
34,37,40>, (13,32)

class 2 Probe: {3,5,6,23,24,32,33}, <1,4,7-9,12-19,
21,22,25-28,34-41>, (2,10,11,20,29,30,31,36,37)

class 3 DOS: {1,3,5,6,8,19,23-28,32,33,35,36,38-41},
<2,7,9-11,14,17,20,22,29,30,34,37>, (4,12,13,15,16,
18,19,21,3)

class 4 U2Su: {5,6,15,16,18,32,33}, <7,8,11,13,17, 19-
24,26,30,36-39>, (9,10,12,14,27,29,31,34,35, 40, 41)

class 5: {3,5,6,24,32,33), <2,4,7-23,26-31,34-41>,
(1,20,25,38)

Because SVMs are only capable of binary
classifications, we will need to employ five SVMs for the
five-class identification problem in intrusion detection. But
since the set of important features may differ from class to
class, using five SVMs becomes an advantage rather than
a hindrance, i.e., in building an IDS using five SVMs, each
SVM can use only the important features for that class
which itis responsible for making classifications.

C. SVM-specific Feature Ranking Method

Information about the features and their contribution
towards classification is hidden in the support vector
decision function. Using this information one can rank their
significance, i.e., in the equation

F (X)= 2 WiXi+b

The point X belongs to the positive class if F(X) is a
positive value. The point X belongs to the negative class if
F(X) is negative. The value of F(X) depends on the
contribution of each value of X and Wi. The absolute value
of Wi measures the strength of the classification. If Wiis a
large positive value then the ith feature is a key factor for
positive class. If Wi is a large negative value then the ith
feature is a key factor for negative class. If Wi is a value
close to zero on either the positive or the negative side,
then the ith feature does not contribute significantly to the
classification. Based on this idea, a ranking can be done by
considering the support vector decision function.

D. Support Vector Decision Function (SVDF)

The input ranking is done as follows: First the original
data set is used for the training of the classifier. Then the
classifier's decision function is used to rank the importance
of the features. The procedure is: Calculate the weights
from the support vector decision function; Rank the
importance of the features by the absolute values of the
weights;

According to the ranking method, the 41 features are
placed into the 3 categories of {Important}, <Secondary> or
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(Unimportant), for each of the 5 classes of patterns, as
follows:

class 1 Normal:

{1,2,34,56,10,12,17,23,24,27,28,29,31,32,33,34,36,39},
<11,13,14,16,19,22,25,26,30,35,37,38,40,41>,
(7,8,9,15,18,20,21)

class 2 Probe: {1,2,3,4,5,6,23,24,29,32,33}, <10,12,
22,28, 34,35,36,38,39,41 >, (7,8,9,11,13,14, 15,16,
17,18, 19 20,21,25,26,27,30,31,37,40)

class 3 DOS: {1,5,6,23,24,25,26,32,36,38,39}, <2,3,
4,10, 12,29,33,34 >(7,8,9,11,13,14,15,16, 17 18,19,
20,21, 22,27,28,30,31,35,36,37,40,41)

class 4 U2Su: {1,2,3,5,6,12,23,24,32,33}, <4,10,13,
14,17 22,27,29,31,34,36,37,39 > (7,8,9,11,15, 16,18,
19,20, 21,25,26,28,30,35,38,40,41)

class 5 R2L: {1,3,5,6,32,33}, <2,4,10,12,22,23,24,
29,31,34,36,37,38,40 >, (7,8,9,11,13,14,15,16,17, 18,
19,20,21,25,26,27,28,30,35,39,41)

IV. EXPERIMENTS

SVMs are used, in each of the two methods, for
ranking the importance of the input features. Once the
importance of the input features was ranked, the
classifiers were trained and tested with only the important
features. Further, we validate the ranking by comparing
the performance of the classifier (20,21) using all input
features to that using the important features; and we also
compare the performance of a classifier using the union of
the important features for all fives classes.

A. SVM Performance Statistics

Our results are summarized in the following tables.
Table 1 gives the performance results of the five SVMs for
each respective class of data. Table 2 shows the results of
SVMs performing classification, with each SVM using as
input the important features for all five classes. Table 3
shows the results of SVMs performing classification, with
each SVM using as input the union of the important
features for all five classes. Table 4 shows the result of
SVMs performing classification, with each SVM using as
input the important and secondary features for each
respective class. Table 5 shows the results of SVMs
performing classification, with each SVM using as input
the important features obtained from the SVDF ranking.
Table 6 shows the results of SVMs performing
classification, with each SVM using as input the union of
the important features for each class as obtained from the
SVDF ranking; the union has 23 features. Table 7 shows
the result of SVMs performing classification, with each
SVM using as input the important and secondary features

foreach respective class.

Table1: Performance of SVMs using 41 features

Class Training | Testing | Accuracy
Time (sec) | Time (%)
(sec)
Normal 7.66 1.26 99.55
Probe 49.13 2.10 89.70
DOS 22.87 1.92 99.25
U2Su 3.38 1.05 99.87
R2L 11.54 1.02 99.78

Table2: Performance of SVMs using important
features

Class No of | Training | Testing | Accurac
Featur | Time Time y
es (sec) (sec)
Normal 25 9.36 1.07 99.59
Probe 7 37.71 1.87 99.38

DOS 19 2279 1.84 99.22

U28u 8 2.56 0.85 99.87

R2L 6 8.76 0.73 99.78

Table3: Performance of SVMs using union of
important features (30)

Class Training | Testing Accuracy
Time Time (sec) | (%)
(sec)
Normal 7.67 1.02 99.51
Probe 44.38 2.07 99.67
DOS 18.64 1.41 99.22
U2Su 3.23 0.98 99.87
R2L 9.81 1.01 99.78

Table4: Performance of SVMs using important and
secondary features

Class | Noof Training | Testing | Accurac

Features | Time Time y (%)
(sec) (sec)

Normal | 39 8.15 1.22 99.59

Probe | 32 47 .56 2.09 99.65

DOS 32 19.72 2.11 99.25

U2Su 25 2.72 0.92 99.87

R2L 37 8.25 1.25 99.80
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Table 5. Performance of SVMs using important
features as ranked by SVDF

Class | No of Training Testing | Accurac
Feature | Time (sec) | Time y (%)
s (sec)
Normal | 20 458 0.78 99.55
Probe 11 40.56 1.20 99.36
DOS 11 18.93 1.00 99.16
u2su 10 1.46 0.70 99.87
R2L 6 6.79 0.72 99.72

Table 6. Performance of SVMs using union of
important features (total 23) as ranked by SVDF

Class Training Testing | Accuracy
time time

Normal | 4.85 0.82 99.55%

Probe | 36.23 1.40 99.71%

DOS 7.77 1.32 99.20%

U2Su 172 0.75 99.87%

R2L 5.91 0.88 99.78%

Table7. Performance of SVMs using important and
secondary features using SVDF

Class | No of Training | Testing | Accurac

Features | Time Time y (%)
(sec) (sec)

Norma | 34 4.61 0.97 99.55

|

Probe | 21 39.69 1.45 99.56

DOS | 19 73.55 1.50 99.56

U2su | 23 1173|079 99.87

R2L 20 5.94 0.91 99.78

V. NEURAL NETWORK EXPERIMENTS

This section summarizes the authors' recent work in
comparing ANNs and SVMs for intrusion detection
(10,11,12). Since a (multi-layer feed forward) ANN is
capable of making multi-class classifications, a single
ANN is employed to perform the intrusion detection, using
the same training and testing sets as those for the SVMs.

Neural networks are used for ranking the importance
of the input features, taking training time, testing time, and
classification accuracy as the performance measure; and
asetofrulesis used forranking. Therefore, the method is

an extension of the feature ranking method described in
(17) where cement bonding quality problem is used as the
engineering application. Once the importance of the input
feature was ranked, the ANNs are trained and tested with
the data set containing only the important features. We
then compare the performance of the trained classifier
against the original ANN trained with data containing all
input features.

A.ANN Performance Statistics

Table 13 in the appendix gives the results of 42
experiments in ranking the input features: the
performance statistics of the original ANN with 41
features, and the performance of the 41 ANNs, each with
40 features. Table 7 below gives the comparison of the
ANN with all 41 features to that of using 34 important
features that have been obtained by our feature-ranking
algorithm described above.

Table 7. Neural network results using all 34

important features
Number | Accurac | False False | Number
of y  positive | negative |  of
feature rate rate epochs
S
4 87.07 6.66 6.27 412
34 8157 | 1819 | 025 27

VI. SUMMARY & CONCLUSIONS

® A number of observations and conclusions are
drawn from the results reported:

® SVMsoutperform ANNSs in the important respects of
scalability (SVMs can train with a larger number of
patterns, while would ANNs take a long time to train
or fail to converge at all when the number of patterns
gets large); training time and running time (SVMs
run an order of magnitude faster); and prediction
accuracy.

® SVMs easily achieve high detection accuracy
(higher than 99%) for each of the 5 classes of data,
regardless of whether all 41 features are used, only
the important features for each class are used, or
the union of all important features for all classes are
used.

We note, however, that the difference in accuracy
figures tend to be very small and may not be statistically
significant, especially in view of the fact that the 5 classes
of patterns differ in their sizes tremendously. More
definitive conclusions can only be made after analyzing
more comprehensive sets of network traffic data.
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Regarding feature ranking, we observe that

The two feature ranking methods produce largely
consistent results: except for the class 1 (Normal)
and class 4 (U2Su) data, the features ranked as
Important by the two methods heavily overlap.

The most important features for the two classes of
'Normal'and 'DOS' heavily overlap.

'U2Su' and 'R2L', the two smallest classes
representing the most serious attacks, each has a
small number of important features and a large
number of secondary features.

The performances of (a) using the important features
for each class, Table 2, Table 5, (b) using the union of
important features, Table 3, Table 6, and (c) using the
union of important and secondary features for each
class Table 4 and Table 7, do not show significant
differences, and are all similar to that of using all 41
features.

Using the important features for each class gives the
most remarkable performance: the testing time
decreases in each class; the accuracy increases
slightly for one class 'Normal', decreases slightly for
two classes 'Probe’ and 'DOS', and remains the
same for the two most serious attack classes.

Our ongoing experiments include making 23-class

(22 specific attacks and normal) feature identification using
SVMs, for the purpose of designing a cost-effective and
real time intrusion detection tool. Finally, we propose a five
SVM based intrusion detection architecture, where we use
the set of important features for each class that are
responsible for making classifications.
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Table 8. List of features [16]. Type C is continuous,

while D is discrete.

# |[Feature name |Description Type

1 (duration Length (# of seconds) of|C
the connection

2 |protocol type [Type of the protocol, [D

e.g. fcp, udp, etc.

3 service Network service on the |D
destination, e.g., http,
telnet, etc.

4 flag Normal or error status ofD
the connection

5 [src_bytes ﬁddaabymiunwueb C

6 |dst_bytes  Hofdatabytesfrom |C
destination to source

7 land 1 if connection is from/to|D
the same host/port; 0
otherwise

8 wrong_fragme # of “wrong” fragments [C

nt

9 (urgent # of urgent packets C
10 hot # of “hot” indicators C
11 hum_failed_log}# of failed login C
ns attempts
12 logged in 1 if successfully logged D
in; 0 otherwise
13 jum_compromi# of compromised C
sed conditions
14 root_shell 1 if root shell is D
obtained; 0 otherwise
15 isu_attempted [1 if “su root" command |D

attempted; 0 otherwise

16 jnum_root # of “root” accesses  [C
17 num_ﬁle_creatiﬁ of file creation C
ons perations
18 jhum_shells  # of shell prompts C
19 num_access_ﬁlt of operations on C
es ccess control files
20 [num_outbound # of outbound C
| cmds commands in an ftp
isession
21 is_host_login 1 if the login belongs to |D
the “hot” list; 0
otherwise
22 fis_guest login [1 if the login is a “guest’ D
ogin; 0 otherwise
23 lcount tconnections tothe |C
ame host as the

current one during past
two seconds




Ramamoorthy Subbureddiar et al : Mining Audit Data for Intrusion Detection Systems using...

24

of connections to the
ame service as the
urrent connection in
he past two seconds

srv_count

25

% of connections that
have “SYN" errors

iserror_rate

{ 7.6

1.26

Table 9. Class 1, Normal

26

isrv_serror_rate% of connections that
have “SYN" errors

27

% of connections that
have “REJ" errors

rerror_rate

28

srv_rerror_rate (% of connections that
have “REJ" errors

29

isame_srv_rate [% of connections to the
same service

30

diff_srv_rate (% of connections to
different services

31

srv_diff_host_r [% of connections to
ate different hosts

32

dst_host_count

33

dst_host_srv_count

34

dst_host_same_srv_rate

35

dst_host_diff_srv_rate

36

dst_host_same_src_port_rate

37

dst_host_srv_diff_host_rate

38

dst_host_serror_rate

39

dst_host_srv_serror_rate

40

dst_host_rerror_rate

41

dst_host_srv_rerror_rate

OOOOOOO[0O[O[0 (@] [¢] (@) (@] (9] (@] (@)

99.55

1019 | 111 | 9951
6.56 146 | 99.55
9.06 147 | 99.48
| 9.96 108 | 99.55
3311|162 | 99.19
7.56 179 | 9875
7.11 143 | 9955
8.33 141 | 9955
8.37 137 | 9955
8.68 135 | 9955
749 133 | 9955
8.01 138 | 9955
7.14 081 | 99.55
8.00 146 | 9955
9.81 143 | 9955
8.15 104 | 9955
8.12 147 | 99.55
7.36 130 | 9955
8.00 112 | 9955
8.15 138 | 9955
7.98 142 | 9955
8.12 143 | 9955
7.65 134 | 99.56
7.29 130 | 99.55
8.32 135 | 9955
7.71 130 | 9955
7.73 138 | 9955
7.90 147 | 9955
7.81 139 | 9955
7.57 138 | 9955
711 130 | 9955
6.17 126 | 9955
8.53 151 | 99.48
723 148 | 9955
6.96 135 | 99.55
1019 | 1.36 | 99.55
6.74 133 | 9955
8.17 143 | 9955
7.75 132 | 9955
7.20 145 | 9955
9.38 143 | 9955

53
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Table10. Class 2, Probe Table11. Class 3, Denial of Service

49.13 2.10 99.70
58.93 2.01 99.70
44.07 1.79 99.70
| 51.00 219 99.61
62.42 1.85 99.70
75.67 1.97 98.14
51.03 117 99.52
51.62 1.98 99.70
55.34 1.88 90.72
53.05 1.99 99.70
46.29 2.00 99.70
45.68 1.96 99.70
53.18 1.95 99.70
56.27 1.95 99.70
50.67 1.92 99.70
49.50 2.07 99.70
47.61 2.16 99.70
49.38 1.93 99.70
50.28 1.91 99.70
50.33 1.94 99.70
48.61 1.93 99.70
50.40 1.89 99.70
51.50 1.96 99.70
49.00 2.63 99.46
| 42.86 1.97 99.61

5240 1.95 99.7
52.42 1.99 99.71
62.51 2.05 99.71
71.80 1.91 99.71
45.95 1.78 99.70
46.62 2.00 99.70
46.35 1.93 99.70
31.89 1.82 99.67
50.90 1.83 99.62
47.64 1.30 99.70
49.49 1.87 99.70
47.39 1.97 99.70
48.19 2.03 99.70
57.51 1.85 99.71
52.54 1.94 99.71
56.45 1.98 99.70
51.66 1.71 99.70

22.87 1.92 99.25
21.76 1.87 99.23
23.60 1.89 99.25
17.88 2.03 99.10
20.00 1.79 99.25
39.57 1.61 97.56
19.63 0.84 98.07
23.76 1.87 99.25
31.23 1.86 99.20
23.80 1.78 99.25
27.01 1.82 99.25
22.03 1.86 99.25
19.69 1.84 99.25
21.30 1.93 99.25
20.18 2.02 99.25
18.76 1.89 99.25
21.56 1.78 99.25
22.98 2.09 99.25
2147 1.95 99.25
20.79 1.97 99.25
2149 1.96 99.25
21.75 1.94 99.25
24.93 2.01 99.25
23.94 3.01 98.58
2543 2.05 99.20
21.70 1.80 99.19
25.93 1.98 99.19
2421 1.41 99.20
26.16 1.80 99.20
29.99 1.93 99.25
18.27 1.79 99.20
19.85 1.79 99.25
11.70 0.95 98.69
4419 1.74 99.19
28.27 1.88 99.25
28.94 1.75 99.22
27.39 1.80 99.22
22.40 1.86 99.25
22.45 1.95 99.19
2381 1.92 99.20
50.15 1.84 99.22
25.36 2.03 99.19
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Table12. Class 4, User to Root

3.38 1.05 99.87
2.98 0.96 99.87
3.35 0.98 99.87
3.00 1.04 99.87
321 1.04 99.87
3N 0.65 99.72
1.99 0.18 88.81
340 1.07 99.87
343 1.10 99.87
3.37 0.97 99.87
3.69 0.97 99.87
347 1.06 99.87
3.36 0.99 99.87
3.61 1.01 99.87
3.12 1.02 99.87
340 1.11 99.87
3.57 1.14 99.87
3.39 0.98 99.87
3.46 1.07 99.87
34 1.05 99.87
3.35 1.10 99.87
3.34 1.08 99.87
3.26 1.07 99.87
3.39 1.05 99.87
3.32 1.07 99.87
344 1.09 99.87
3.38 1.06 99.87
3.36 1.05 99.87
3.23 1.00 99.87
3.36 0.98 99.87
342 0.98 99.87
3.34 1.00 99.87
3.95 0.92 99.84
4.58 0.99 99.85
3.36 1.02 99.87
2.98 1.05 99.87
3.50 1.05 99.87
343 1.00 99.87
3.79 1.05 99.87
3.27 1.07 99.87
3.36 0.99 99.87
3.36 1.01 99.87

Table13. Class 5, Remote to Local

11.54 1.02 99.78
7.54 1.04 99.80
8.79 1.23 99.78
9.95 1.1 99.75
8.56 1.26 99.78
12.11 1.79 99.06
16.52 0.63 98.88
10.18 1.34 99.78
9.59 1.31 99.78
8.41 1.23 99.78
9.30 1.32 99.78
10.21 1.23 99.78
9.48 1.33 99.78
9.88 1.29 99.78
8.84 1.22 99.78
9.25 1.28 99.78
8.89 1.20 99.78
9.21 1.24 99.78
9.60 1.30 99.78
10.15 1.30 99.78
10.68 0.99 99.78
10.99 1.26 99.78
10.88 1.26 99.78
8.19 1.26 99.78
7.67 1.22 99.72
9.26 1.05 99.78
10.11 1.30 99.78
9.09 1.24 99.78
9.10 1.23 99.78
11.39 1.1 99.78
10.64 1.26 99.78
8.56 1.26 99.78
11.55 1.05 99.80
12.35 1.25 99.80
10.59 1.14 99.78
9.07 1.18 99.78
9.22 1.22 99.78
9.33 1.30 99.78
8.98 0.95 99.78
8.52 1.26 99.78
8.98 1.1 99.78
10.35 1.26 99.78
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Table14. Neural network feature ranking results REFERENCES
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